OPERATING MANUAL

Driver for 5-Phase Stepping Motor CVD Series SC type
 C

Table of contents

Introduction.1Safety precautions 1
Precautions for use. 2
Preparation 2
Installation.3
Connection 5
Setting 10
Alarm.. 11

Introduction

- Before use

Only qualified personnel of electrical and mechanical engineering should work with the product.
Use the product correctly after thoroughly reading the "Safety precautions." In addition, be sure to observe the contents described in warning, caution, and note in this manual.
The product described in this manual is designed and manufactured to be incorporated in general industrial equipment. Do not use for any other purpose. Oriental Motor Co., Ltd. is not responsible for any damage caused through failure to observe this warning

■ Overview of the product

This product is a driver for 5-phase stepping motors. Simply inputting operation signals from a programmable controller can easily drive the motor without using a pulse generator.
You can set two different operating speeds of high speed and low speed, and also switch the speed by the input signal even while operating.
The CVD Series SC type defines the operating speed of the high speed side as "Speed1" and the operating speed of the low speed side as "Speed2."

Safety precautions

The precautions described below are intended to prevent danger or injury to the user and other personnel through safe, correct use of the product. Use the product only after carefully reading and fully understanding these instructions.

Description of signs

Handling the product without observing the instructions that accompany a "WARNING" symbol may result in serious injury or death.
Handling the product without observing the instructions that accompany a "CAUTION" symbol may result in injury or property damage.

Thank you for purchasing an Oriental Motor product.
This Manual describes product handling procedures and safety precautions.

- Please read it thoroughly to ensure safe operation.
- Always keep the manual where it is readily available.

| The items under this heading contain related information |
| :--- | :--- |
| and contents to gain a further understanding of the text |
| in this manual. |

Description of graphic symbols

Indicates "prohibited" actions that must not be performed.

Indicates "compulsory" actions that must be performed.

- Do not use the product in explosive or corrosive environments, in the presence of flammable gases, locations subjected to splashing water, or near combustibles. Doing so may result in fire or injury. - Do not forcibly bend, pull or pinch the cable. Doing so may result in fire. - Do not remove the motor excitation during operation. Doing so may cause the motor to stop and lose the holding force, resulting in injury or damage to equipment. - Do not disassemble or modify the driver. Doing so may result in injury or damage to equipment.					
- Assign qualified personnel to the task of installing, wiring, operating/controlling, inspecting and troubleshooting the driver. Failure to do so may result in fire, injury, or damage to equipment. - When an alarm is generated in the driver (any of the driver's protective functions is triggered), remove the cause before clearing the alarm (protective function). Continuing the operation without removing the cause of the problem may cause malfunction of the motor and the driver, leading to injury or damage to equipment. - Install the driver inside an enclosure. Failure to do so may result in injury. - Always keep the power supply voltage of the driver within the specified range. Failure to do so may result in fire. - For the driver power supply use a DC power supply with reinforced insulation on its primary and secondary sides. Failure to do so may result in electric shock. - Connect the cables securely according to the wiring diagram. Failure to do so may result in fire. - Turn off the driver power supply in the event of a power failure. Failure to do so may result in injury or damage to equipment.					

ACAUTION

| - Do not use the driver beyond its specifications. Doing so may result |
| :--- | :--- |
| in injury or damage to equipment. |
| - Do not insert a finger or an object between the board and the heat |
| sink. Failure to do so may result in fire or injury. |
| - Do not touch the driver during operation or immediately after |
| stopping. Doing so may result in a skin burn(s). |
| - Do not forcibly bend or pull the cable that was connected to the |
| driver. Doing so may result in damage to the product,. |
| - Keep the area around the driver free of combustible materials. |
| Failure to do so may result in fire or a skin burn(s). |
| - Leave nothing around the product that would obstruct ventilation. |
| Failure to do so may result in damage to equipment. |

	• Use a motor and driver only in the specified combination．Failure to do so may result in fire． －Provide an emergency stop device or emergency stop circuit external to the equipment so that the entire equipment will operate safely in the event of a system failure or malfunction． Failure to do so may result in injury．
Before supplying power to the driver，turn all input signals to the driver to OFF．Failure to do so may result in injury or damage to equipment． When moving the moving part manually，put the motor into a non－excitation state．Continuing the work while the motor is in an excitation state may result in injury． • Immediately when a problem occurred，stop operation and turn off the driver power．Failure to do so may result in fire or injury．	

Precautions for use

－When conducting the insulation resistance measurement or the dielectric strength test，be sure to separate the connection between the motor and the driver．
Conducting the insulation resistance measurement or dielectric strength test with the motor and driver connected may result in damage to the product．

－Regeneration

When a large load inertia is operated at a high speed，the power supply voltage may increase by the regenerative energy generated，causing an alarm of overvoltage to generate．This may result in damage to the driver，so reconsider the operating condition so as not to generate the regenerative voltage．

Preparation

－Checking the product

Verify that the items listed below are included．Report any missing or damaged items to the Oriental Motor sales office from which you purchased the product．
－Driver．．．． \qquad 1 unit
－Instructions and Precautions for Safe Use \qquad 1 copy
－Connector housing／contact \qquad 1 set
（Packed in a bag；refer to the table below．）

Application	Housing＊	Contact＊
For power supply（CN1）	1 pc．51103－0200（2－poles）	19 pcs．50351－8100
For motor（CN2）	$1 \mathrm{pc}$. 51103－0500（5－poles）	
For I／O signals（CN3）	1 pc．51103－1200（12－poles）	

＊Manufacturer：Molex Incorporated
When removing the driver from the ESD protection bag，make sure your hands are not charged with static electricity．This is to prevent damage to the driver due to static electricity．

How to identify the product model

$$
\frac{\text { CVD }}{1} \frac{5}{2} \frac{18}{3} \frac{B}{4} \frac{\mathbf{R}}{5}-\frac{\mathbf{K}}{6} \frac{\text { SC }}{7}
$$

1	Series	CVD：CVD Series
2	Number of phases of motor	5：5－phase
3	Motor rated current	$\mathbf{1 2 :} 1.2 \mathrm{~A} /$ phase 18： $1.8 \mathrm{~A} /$ phase $\mathbf{2 4 :} 2.4 \mathrm{~A} /$ phase
4	Driver shape	B：With mounting plate
5	Connector shape	R：Right angle Blank：Vertical
6	Power supply input	K：DC power supply
7	Driver type	SC：Speed control

Information about nameplate

The figure shows an example．

Motor specifications for possible combinations

Use the driver in combination with the motors shown in the table． Check the motor rated current on the Oriental Motor Website or the motor nameplate．

Model name＊1	Motor rated current	Motor combination＊2
CVD512B口－KSC	1．2 A／phase	PKP523N12 PKP525N12■
CVD518Bロ－KSC	1．8 A／phase	PKP543N18■2 PKP544N18■2 PKP545N18■2 PKP546N18■2
CVD524Bロ－KSC	2．4 A／phase	PKP564FN24■2 PKP566FN24■2 PKP569FN24■2

＊1 When the connector shape is of right angle，the box（ \square ）in the model name indicates \mathbf{R} ．
＊2 The box（ $\mathbf{\square}$ ）in the model name indicates \mathbf{A}（single shaft）or \mathbf{B}（double shaft） representing the motor shape．

Names of parts

－When the connector shape is of vertical

- When the connector shape is of right angle

- Details of switches

Refer to p .10 for the setting method. The figure shows the factory setting.

[Speed setting switch] $\times 16 /$ SPD1 switch $\times 1 /$ SPD 2 switch				[Function setting switch] No.1: SPD H/L switch (Highest speed) No.2: SPD2 EN switch (Speed2 selection) No.3: RUN switch (Operating current rate) No. 4 to 6: ACC switch (Acceleration time, deceleration time)	
Switch the ACC switch (function setting switch No. 4 to No.6) while the motor is stopped. Other switches can be changed even while the motor is operating.					
- Function setting switch					
No.	Indication	Function			Factory setting
1	SPD H/L	Selects the highest speed of the Speed1. OFF: $600 \mathrm{r} / \mathrm{min}$ ON: $200 \mathrm{r} / \mathrm{min}$			OFF
2	SPD2 EN	Selects the setting method of the Speed2. OFF: Fixed to 10% of the Speed1 ON: Set from 16 operating speeds			OFF
3	RUN	Sets the operating current rate. OFF: 100 \% ON: 70 \%			OFF
4	ACCO	Sets the acceleration time and deceleration time based on a combination of ON/OFF status of three switches. Factory setting: 0.50 s			No.4: OFF No.5: OFF No.6: ON
5	ACC1				
6	ACC2				

- Speed setting switch

Indication	Function	Factory setting
$\times 16 /$ SPD1	Sets the Speed1.	7
$\times 1 /$ SPD2	Sets the Speed1 or Speed2.	7

Installation

- Location for installation

The driver is designed and manufactured to be incorporated in equipment. Install it in a well-ventilated location that provides easy access for inspection. The location must also satisfy the following conditions:

- Inside an enclosure that is installed indoors (provide vent holes)
- Operating ambient temperature 0 to $+50^{\circ} \mathrm{C}\left(+32\right.$ to $\left.+122^{\circ} \mathrm{F}\right)$ (non-freezing)
- Operating ambient humidity 85% or less (non-condensing)
- Area free of explosive atmosphere or toxic gas (such as sulfuric gas) or liquid
- Area not exposed to direct sun
- Area free of excessive amount of dust, iron particles or the like
- Area not subject to splashing water (rain, water droplets), oil (oil droplets) or other liquids
- Area free of excessive salt
- Area not subject to continuous vibration or excessive shocks
- Area free of excessive electromagnetic noise (from welders, power machinery, etc.)
- Area free of radioactive materials, magnetic fields or vacuum
- 1,000 m (3,300 ft.) or lower above sea level

- Installation direction

Install the driver on a metal plate having excellent vibration resistance in vertically or horizontally. If the driver is installed under conditions other than vertical or horizontal position, its heat radiation effect will deteriorate. The items shown below are necessary in order to install the driver. The items are not included and must be provided by the customer.
Torque the mounting screw to $0.5 \mathrm{~N} \cdot \mathrm{~m}$ (71 oz-in).

- M3 Screw \qquad . .4 pieces (2 pieces) *1
- M3 Spring washer \qquad 4 pieces (2 pieces) *1
- M3 Nut \qquad .4 pieces (2 pieces) * 1 *2
*1 (): When using the cutouts for mounting B.
*2 Not necessary if screw holes are provided in the mounting plate.

There must be clearances of at least 25 mm (0.98 in .) and 50 mm (1.97 in .) in the horizontal and vertical directions respectively, between the driver and enclosure or other equipment within the enclosure. When two or more drivers are to be installed side by side, provide clearances in the horizontal and vertical directions as shown in the figure.
memo - Install the driver inside an enclosure.

- Do not install any equipment that generates a large amount of heat or noise near the driver.
- If the ambient temperature of the driver exceeds $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$, improve the ventilation condition.

Horizontal installation

- Vertical installation

■ Installation method

Install the driver using either the "cutouts for mounting A" or "cutouts for mounting B."
The figure shows the driver which connector shape is of right angle.
Note If both cutouts A and B are used for installation, the heat sink is distorted, causing the board to apply stress.

- Horizontal installation

Install the driver in a direction shown in the figure. Installing the driver upside down causes the heat radiation effect to deteriorate.

- Vertical installation

The driver can be installed in any direction.

Dimension [unit: mm (in.)]

- When the connector shape is of vertical

Mass: 0.06 kg (2.1 oz.)

- When the connector shape is of right angle

Mass: $0.06 \mathrm{~kg}(2.1 \mathrm{oz}$.

Connection

Applicable connector

Type	Application	Model *
Connector housing	For power supply (CN1)	51103-0200
	For motor (CN2)	51103-0500
	For I/O signals (CN3)	51103-1200
Contact	-	50351-8100
Designated crimping tool	-	63811-8100
Applicable lead wire	- For power supply (CN1) - Stranded wire AWG22 ($0.3 \mathrm{~mm}^{2}$) - Outer sheath diameter: $\varnothing 1.15$ to 1.8 mm ($\varnothing 0.045$ to 0.071 in .) - Strip length of wire insulation: 2.3 to 2.8 mm (0.091 to 0.11 in .) - For motor (CN2) - Stranded wire AWG24 to 22 (0.2 to $0.3 \mathrm{~mm}^{2}$) * - Outer sheath diameter: $\varnothing 1.15$ to 1.8 mm ($\varnothing 0.045$ to 0.071 in .) - Strip length of wire insulation: 2.3 to 2.8 mm (0.091 to 0.11 in .) * AWG22 ($0.3 \mathrm{~mm}^{2}$) for the CVD524Bロ-KSC - For I/O signals (CN3) - Stranded wire AWG24 to 22 (0.2 to $0.3 \mathrm{~mm}^{2}$) - Outer sheath diameter: $\varnothing 1.15$ to 1.8 mm ($\varnothing 0.045$ to 0.071 in .) - Strip length of wire insulation: 2.3 to 2.8 mm (0.091 to 0.11 in .)	

* Manufacturer: Molex Incorporated
- For the I/O signal cable, use a twisted pair cable.
- Keep the wiring distance as short as possible [less than $2 \mathrm{~m}(6.6 \mathrm{ft}$)] to suppress the effect of noise.
- A connection cable set is also available in our products. Lead wires with a connector allow for easy connection.

Connector pin assignment

- CN1 (Power supply)

Pin No.	Direction	Signal name	Description
+	Input	POWER	+24 VDC
			GND
-			

CN2 (Motor)

Pin No.	Direction	Signal name	Description
1	Output	MOTOR	Blue motor lead wire
2			Red motor lead wire
3			Orange motor lead wire
4			Green motor lead wire
5			Black motor lead wire
$10 \mathrm{mo}$	nector pin r to "Conn	signments vary ing the motor	depending on the motor. n p.6.

- CN3 (I/O signals)

Pin No.	Direction	Signal na		Description
1	Input	FWD	+	Forward input
2			-	
3		RVS	+	Reverse input
4			-	
5		AWO	+	All windings off input
6			-	
7		M0	+	Data selection input
8			-	
9	Output	ALM	+	Alarm output
10			-	
11		PLS-OUT	$+$	Pulse output
12			-	

■ Connecting the power supply

Use a power supply that can supply the following current capacity. When the power is turned on, the PWR/ALM LED will be lit in green.

Model name*	Input power supply voltage	Power supply current capacity
CVD512B \square-KSC		0.9 A or more
CVD518B \square-KSC	$+24 \mathrm{VDC} \pm 10 \%$	2.5 A or more
CVD524B \square-KSC		3.0 A or more

* When the connector shape is of right angle, the box (\square) in the model name indicates \mathbf{R}.

Note

- When connecting, pay attention to the polarity of the power supply. Reverse-polarity connection may cause damage to the driver.
- Connect the connector securely. Insecure connection may cause malfunction or damage to the motor and driver.
memo - When disconnecting the connector, pull out while pressing the latches on the connector.
- When turning on the power supply again or connecting/ disconnecting the connector, turn off the power and wait for the PWR/ALM LED to turn off.
- Separate I/O signal cable at least 100 mm (3.94 in .) from electromagnetic relays and other than inductance loads. Additionally, route I/O signal cable perpendicular to power supply cable and motor cable, rather than in a parallel fashion.
- Do not route the power supply cable in the same conduits as other power supply lines and motor cable.
- If the motor cable or power supply cable generates an undesirable amount of noise depending on the wiring or configuration, shield the cable or install a ferrite core.

- Connecting the motor

Connector pin assignments vary depending on the motor. Refer to the table. The pin number is shown in the figure.
"Color" in the table shows the lead wire colors of our connection cable.
Note
The motors of the model A and model B are different in pin assignments. Wrong connection will not cause the motor to operate properly.

Model B Pin No. \rightarrow 1

Driver CN2 Pin No.	Model A		Model B	
	Pin No.	Color	Pin No.	Color
1	5	Blue	1	Blue
2	4	Red	2	Red
3	3	Orange	3	Orange
4	2	Green	4	Green
5	1	Black	5	Black

Explanation of I/O signals

- Input signals

All input signals of the driver are photocoupler inputs.
The signal input state represents "ON: Carrying current" or "OFF: Not carrying current" state of the internal photocoupler rather than the voltage level of the signal.

- FWD (Forward) input, RVS (Reverse) input

Turning the FWD input or RVS input ON will start continuous operation.

FWD input	RVS input	Motor movement
ON	OFF	The motor rotates in the forward direction.
OFF	ON	The motor rotates in the reverse direction.
ON	ON	Immediate stop
OFF	OFF	Deceleration stop
memo		
If the driver power is turned ON while the FWD input or RVS input is		
being ON, the motor will operate.		

- AWO (All windings off) input

When the AWO input is turned ON, the motor current will be cut off and the motor will lose its holding torque. The motor output shaft can be turned manually.
When the AWO input is turned OFF, current will be supplied and the holding torque will be restored.
Also, when the overheat alarm was generated, the alarm can be reset if the AWO input is turned from OFF to ON after the circuit temperature of the driver decreased $75^{\circ} \mathrm{C}\left(167^{\circ} \mathrm{F}\right)$ or lower.

- M0 (Data selection) input

Turning the M0 input OFF will select the Speed1 (high speed). Turning the MO input ON will select the Speed2 (low speed).

- Output signals

The driver outputs signals are photocoupler/open-collector output. The signal output state represents "ON: Carrying current" or "OFF: Not carrying current" state of the internal photocoupler rather than the voltage level of the signal.

- ALM (Alarm) output

The ALM output is normally closed. When an alarm generates, the ALM output will turn OFF and put the motor into a non-excitation state. At the same time, the PWR/ALM LED of the driver will blink in red.

- PLS-OUT (Pulse) output

The PLS-OUT output are output 50 times with each revolution of the motor output shaft. ON-OFF ratio (duty ratio) for when the motor is operated at constant speed is 50%.
The maximum output frequency is 500 Hz .

■ Connection example

- When using the voltage of input signals at 5 VDC (Refer to p .8 for when connecting 24 VDC.)

* Connector pin assignments vary depending on the motor. For details, refer to "Connecting the motor" on p. 6
memo - Use output signals at $30 \mathrm{VDC}, 10 \mathrm{~mA}$ or less. If the current exceeds 10 mA , connect an external resistor R0 so that the current becomes 10 mA or less.
- Up to three our cables can be used for the connection between the motor and driver. Keep 10 m (32.8 ft .) or less for the wiring distance between the motor and driver.

- When using the voltage of input signals at 24 VDC

memo

- The input voltage specification for the FWD input and RVS input is 5 VDC . If the voltage exceeding 5 VDC is applied, connect an external resistor R1 so that the input current becomes 7 to 20 mA .
Example) When the 24 VDC is connected: $\mathrm{R} 1=1.5$ to $2.2 \mathrm{k} \Omega, 0.5 \mathrm{~W}$ or more
- The input voltage specification for the AWO input and MO input is 5 VDC. If the voltage exceeding 5 VDC is applied, connect an external resistor R2 so that the input current becomes 5 to 15 mA .
Example) When the 24 VDC is connected: $\mathrm{R} 2=1.5$ to $2.2 \mathrm{k} \Omega, 0.5 \mathrm{~W}$ or more
- When our external resistor module VCS01 is connected instead of the external resistor R1 and R2, use at $24 \mathrm{VDC} \pm 5 \%$.
- Up to three our cables can be used for the connection between the motor and driver. Keep 10 m (32.8 ft .) or less for the wiring distance between the motor and driver.

- Timing chart

- Excitation timing

* Turn on the power supply again after the PWR/ALM LED is turned off.

- Operation timing

■ Noise measures

The electrical noise is of two types: One is a noise to invade into the driver from the outside and cause the driver malfunction, and the other is a noise to emit from the driver and cause peripheral equipment malfunction. For the noise that is invaded from the outside, take measures to prevent the driver malfunction. It is needed to take adequate measures because signal lines are very likely to be affected by the noise.
For the noise that is emitted from the driver, take measures to suppress it.

- Measures against electrical noise

There are the following three methods mainly to take measures against the electrical noise.

- Noise suppression

- When relays or electromagnetic switches are used together with the system, use noise filters and CR circuits to suppress surges generated by them.
- Cover the driver by a metal plate such as aluminum. This is effective in shielding the electrical noise emitted from the driver

- Prevention of noise propagation

- Place the power lines, such as the motor and power supply cables, keeping a distance of 100 mm (3.94 in .) or more from the signal lines, and also do not bundle them or wire them in parallel. If the power cables and signal cables have to cross, cross them at a right angle.
- Use shielded twisted pair cables of AWG22 ($0.3 \mathrm{~mm}^{2}$) for power lines and AWG24 to AWG22 (0.2 to $0.3 \mathrm{~mm}^{2}$) for signal lines.
- Keep cables as short as possible without coiling and bundling extra lengths.
- To ground a shielded cable, use a metal cable clamp that will maintain contact with the entire circumference of the cable. Ground the cable clamp near the product.

- Grounding multiple points will increase effect to block electrical noise because impedance on the grounding points is decreased. However, ground them so that a potential difference does not occur among the grounding points. I/O signal cables that include a ground wire are provided in our product line. Refer to p .12 for the model name.

- Suppression of effect by noise propagation

Loop the noise propagated cable around a ferrite core. Doing so will prevent the propagated noise invades into the driver or emits from the driver. The frequency band in which an effect by the ferrite core can be seen is generally 1 MHz or more. Check the frequency characteristics of the ferrite core used To increase the effect of noise attenuation by the ferrite core, loop the cable a lot.

- Our noise suppression parts

Refer to $p .12$ for the model name.

- I/O signal cable

This cable is a shielded twisted pair cable for good noise immunity to connect the driver and programmable controller. The ground wires useful to grounding are provided at both ends of the cable. The EMC measures are conducted using our I/O signal cable.

- Surge suppressor

This product is effective to suppress the surge which occurs in a relay contact part. Connect it when using a relay or electromagnetic switch. CR circuit for surge suppression and CR circuit module are provided.

Conformity to the EMC Directive

Effective measures must be taken against the EMI that the motor and driver may give to adjacent control-system equipment, as well as the EMS of the motor and driver itself, in order to prevent a serious functional impediment in the machinery. The use of the following installation and wiring methods will enable the motor and driver to be compliant with the EMC Directive. Refer to p. 12 for the Applicable Standards.

Oriental Motor conducts EMC measurements on its motors and drivers in accordance with the "Example of motor and driver installation and wiring" in the below.
The user is responsible for ensuring the machine's compliance with the EMC Directive, based on the installation and wiring explained below.

- Power supply

The driver is a product of DC power input. Use a DC power supply (switchedmode power supply etc.) that conforms to the EMC Directive.

- Connecting the signal cable

Refer to "Prevention of noise propagation."

- How to ground

- The cable used to ground the motor and driver must be as thick and short as possible so that no potential difference is generated.
- Choose a large, thick and uniformly conductive surface for the grounding point.
- Install the motor to the grounded metal plate.

- Example of motor and driver installation and wiring

The driver uses parts that are sensitive to electrostatic charge. Take measures against static electricity since static electricity may cause the driver to malfunction or suffer damage

Setting

The figure shows the factory setting.

[Function setting switch] No.1: SPD H/L switch (Highest speed)
No.2: SPD2 EN switch (Speed2 selection) No.3: RUN switch (Operating current rate) No. 4 to 6: ACC switch

> (Acceleration time,
deceleration time)
Two different operating speeds of high speed and low speed can be set in the driver.
It defines the high speed side as "Speed1" and the low speed side as "Speed2" to be as follows.

- Speed1...........Operating speed at the high speed side for when the M0 input is turned OFF.
- Speed2...........Operating speed at the low speed side for when the M0 input is turned ON.

Two setting patterns are available for the Speed 1 and Speed2, and they vary depending on the setting of the SPD2 EN switch (function setting switch No.2).

Setting pattern	SPD2 EN switch	Speed setting method	Switch used
Pattern 1	OFF	Speed1: Selected one from 256 different speeds	Use in a combination of $\times 16 /$ SPD 1 and $\times 1 /$ SPD2
		Speed2: Fixed to a 10% speed of the Speed1	No use
Pattern 2	ON	Speed1: Selected one from 16 different speeds	$\times 16 /$ SPD1
		Speed2: Selected one from 16 different speeds in a range of 0.5 to 50% of the Speed1	$\times 1 /$ SPD2

- Setting procedure

- Setting item

- Highest speed

The highest speed of the Speed1 is selected with the SPD H/L switch (function setting switch No.1). Select either $200 \mathrm{r} / \mathrm{min}$ or $600 \mathrm{r} / \mathrm{min}$ for the highest speed. The speed, which can be set with the speed setting switch, differs in $200 \mathrm{r} / \mathrm{min}$ and $600 \mathrm{r} / \mathrm{min}$. Check a desired speed with the tables on p .14 to p. 15.

OFF: $600 \mathrm{r} / \mathrm{min}$
ON: $200 \mathrm{r} / \mathrm{min}$

Factory setting: OFF (600 r/min)

- Setting method for the Speed2

The setting method for the Speed2 is selected with the SPD2 EN (function setting switch No.2).
OFF: Fixed to a 10 \% speed of the Speed1
ON: Selected one from 16 different speeds in a range of 0.5 to 50% of the Speed1

Factory setting: OFF (Fixed to a 10 \% speed of the Speed1)

- Operating speed

The operating speed varies depending on the setting pattern.

- Pattern 1
- Speed1...........Check a desired speed from 256 different speeds in the tables on p.14, and set using a combination of the $\times 16 /$ SPD1 switch and the $\times 1 /$ SPD 2 switch.
- Speed2...........This is fixed to a 10% speed of the Speed1.

- Pattern 2

- Speed1...........Check a desired speed from 16 different speeds in the tables on p.15, and set with the $\times 16 /$ SPD 1 switch.
- Speed2...........Check a desired speed from 16 different speeds in the tables on p. 15 , and set with the $\times 1 /$ SPD 2 switch.

- Acceleration time and deceleration time

The acceleration time refers to the time needed for the operating speed to reach $600 \mathrm{r} / \mathrm{min}$ from $0 \mathrm{r} / \mathrm{min}$. The deceleration time refers to the time needed for the operating speed to reach $0 \mathrm{r} / \mathrm{min}$ from $600 \mathrm{r} / \mathrm{min}$. The same time is applied to all of the acceleration, deceleration, and changing speed. Set using the ACC0 to ACC2 switches (function setting switch No. 4 to No.6),

Factory setting: 0.50 s

ACCO (No.4)	ACC1 (No.5)	ACC2 (No.6)	Acceleration time Deceleration time
OFF	OFF	OFF	0.00 s
ON	OFF	OFF	0.05 s
OFF	ON	OFF	0.10 s
ON	ON	OFF	0.20 s
OFF	OFF	ON	0.50 s
ON	OFF	ON	1.00 s
OFF	ON	ON	2.00 s
ON	ON	ON	3.00 s

- Operating current rate and standstill current rate

- Operating current rate

If the load is small and there is an ample allowance for torque, the motor temperature rise can be suppressed by setting a lower operating current rate. The actual operating current is a value that the rated operating current of the driver is multiplied by the operating current rate.
Operating current $=$ Driver rated current \times Operating current rate
Select the operating current rate using the RUN switch (function setting switch No.3).
OFF: Operating current rate 100%
ON: Operating current rate 70 \%
Factory setting: OFF (100 \%)
memo Set the operating current rate to 70% when using the CVD524BRKSC with our circuit protection cover.

- Standstill current rate

When the motor stops, the current cutback function will be actuated to lower the motor current to the standstill current. The standstill current rate is 50% of the operating current.
Standstill current $=$ Operating current $\times 50 \%$

Alarm

When the driver's protective function triggers and an alarm generates, the ALM output is turned OFF and put the motor into a non-excitation state. At the same time, the PWR/ALM LED will blink in red. The cause of the alarm can be checked by counting the number of times the PWR/ALM LED blinks.

Alarm list

Number of times LED blinks	Alarm type	Cause and remedial action
2	Overheat	[Cause] The temperature of the driver circuit board reached $85^{\circ} \mathrm{C}\left(185^{\circ} \mathrm{F}\right)$. [Remedial action] Review the ventilation condition.
		[Cause] The power supply voltage exceeded 43.1 V . [Remedial action] Check the input voltage of the power supply.
3	Overvoltage	[Cause] A large inertial load was stopped abruptly or vertical operation was performed. [Remedial action] If this alarm generates during operation, reduce the load or increase the acceleration/deceleration time.
5	Overcurrent	[Cause] An excessive current was flowed through the driver output circuit for motor. [Remedial action] Turn off the power and check that the motor, cable and driver are not damaged.
		[Cause] The motor was made a quick stop or a rapid deceleration. [Remedial action] Review the operating conditions.
9	EEPROM error	[Cause] The stored data in the driver was damaged. [Remedial action] Contact your nearest Oriental Motor sales office.
Lit	CPU error	[Cause] CPU malfunctioned. [Remedial action] Turn on the power supply again.

Alarm reset

When the power supply is turned on again, the alarm will be reset. Before resetting an alarm, always remove the cause of the alarm and ensure safety. The overheat alarm can be reset by the AWO input if the circuit temperature of the driver goes down $75^{\circ} \mathrm{C}\left(167^{\circ} \mathrm{F}\right)$ and under. Be sure to check the circuit temperature went down $75^{\circ} \mathrm{C}\left(167^{\circ} \mathrm{F}\right)$ and under before resetting the alarm by turning the AWO input from OFF to ON.

Maintenance/inspection

- Inspection

It is recommended that periodic inspections are conducted for the items listed below after each operation of the motor. If an abnormal condition is noted, discontinue any use and contact your nearest Oriental Motor sales office.

Inspection item

- Check if the installation place of the driver is loose.
- Check if any of the connection parts of the connector is loose.
- Check if dust and others attach on the driver.
- Check if the driver has unusual smells or appearance defects.

The driver uses semiconductor elements, so be extremely careful when handling them. Static electricity may damage the driver

- Warranty

Check on the Oriental Motor Website for the product warranty.

Disposal

Dispose the product correctly in accordance with laws and regulations, or instructions of local governments.

General specifications

	Ambient temperature	0 to $+50^{\circ} \mathrm{C}\left(+32\right.$ to $\left.+122^{\circ} \mathrm{F}\right)$ (non-freezing)
	Humidity	85% or less (non-condensing)
Operation environment	Altitude	Up to $1,000 \mathrm{~m}(3,300 \mathrm{ft}$.) above sea level
	Surrounding atmosphere	No corrosive gas, dust, water or oil
Storage environment, Shipping environment	Ambient temperature	-25 to $+70^{\circ} \mathrm{C}\left(-13\right.$ to $\left.+158^{\circ} \mathrm{F}\right)$ (non-freezing)
	Humidity	85% or less (non-condensing)
	Altitude	Up to $3,000 \mathrm{~m}(10,000 \mathrm{ft}$.) above sea level
	Surrounding atmosphere	No corrosive gas, dust, water or oil

Regulations and standards

■ CE Marking

- Low Voltage Directive

The input power supply voltage of this product is 24 VDC . Therefore this product is not subject to the Low Voltage Directive, but install and connect it as follows.

- This product is designed and manufactured to be incorporated in equipment. Be sure to install the product inside an enclosure.
- For the driver power supply, use a DC power supply with reinforced insulation on its primary and secondary sides.

- EMC Directive

This product is conducted EMC testing under the conditions specified in "Example of motor and driver installation and wiring" on p.9. The conformance of your mechanical equipment with the EMC Directive will vary depending on such factors as the configuration, wiring, and layout for other control system devices and electrical parts used with this product. It therefore must be verified through conducting EMC measures in a state where all parts including this product have been installed in the equipment.
§CAUTION This equipment is not intended for use in residential environments nor for use on a low-voltage public network supplied in residential premises, and it may not provide adequate protection to radio reception interference in such environments.

Republic of Korea, Radio Waves Act

This product is affixed the KC Mark under the Republic of Korea, Radio Waves Act.

RoHS Directive

This product does not contain the substances exceeding the restriction values.

Cables

- Connection cable set

For the connection cable set, a set of three cables for the power supply motor, and input/output signals is provided.

Model name	Length [m (ft.)]	Conductor
LCS04SD5	$0.6(2)$	AWG22 $\left(0.3 \mathrm{~mm}^{2}\right)$

I/O signal cables

This is a shielded twisted pair cable for the driver control I/O signals (12 pins) that has good noise immunity. The ground wires useful to grounding are provided at both ends of the cable.

Model name	Length $[\mathrm{m}(\mathrm{ft})]$.	Conductor
CC12D005-2	$0.5(1.6)$	
CC12D010-2	$1(3.3)$	
CC12D015-2	$1.5(4.9)$	$\left(0.2 \mathrm{~mm}^{2}\right)$
CC12D020-2	$2(6.6)$	

Accessories

CR circuit for surge suppression

This product is effective to suppress the surge which occurs in a relay contact part. Use it to protect the contacts of the relay or switch.
Model name: EPCR1201-2

- External resistor module

Five current-limiting resistors, which are required when the 24 VDC output controller is connected to the driver, are mounted. LEDs are also mounted in order to check the signal input.
Model name: VCS01

CR circuit module

This product is effective to suppress the surge which occurs in a relay contact part. Use this product to protect the contacts of the relay or switch. Four pieces of CR circuit for surge suppression are mounted on the compact circuit, and this product can be installed to the DIN rail. This product can make the wiring easily and securely since it also supports terminal block connection
Model name: VCSO2

Circuit protection cover

This is a cover to protect the circuit board as well as to prevent from contacting to the live connections.
It can be used for the driver which connector shape is of right angle.
Model name: PADC-CVD

Specifications

- When the connector shape of the driver is of right angle, the box (\square) in the model name indicate \mathbf{R}.
- The box (\square) in the motor model indicates \mathbf{A} (single shaft) or \mathbf{B} (double shaft) representing the motor type.

- CVD512BD-KSC

Motor model	PKP523N12■	PKP525N12■
Maximum static torque at excitation [N•m (oz-in)]	$0.052(7.3)$	$0.091(12.9)$
Holding torque at motor standstill [N•m (oz-in)]	$0.026(3.6)$	$0.045(6.3)$
Rotor inertia [J: kg $\left.\cdot \mathrm{m}^{2}\left(\mathrm{oz}-\mathrm{in}^{2}\right)\right]$	$9 \times 10^{-7}(0.049)$	$18 \times 10^{-7}(0.099)$
Rated current [A/phase]	1.2	
Setting speed range [r/min]	0.02 to 600	
Speed accuracy *	$\pm 0.8 \%$	
Power supply input	$24 \mathrm{VDC} \pm 10 \%, 0.9 \mathrm{~A}$	
Excitation mode	Microstepping	

* The actual operating speed is accurate within $\pm 0.8 \%$ against the set speed.

- CVD518Bロ-KSC

Motor model	PKP543N18■2	PKP544N18■2	PKP545N18■2	PKP546N18■2
Maximum static torque at excitation [$\mathrm{N} \cdot \mathrm{m}$ (oz-in)]	0.22 (31)	0.3 (42)	0.37 (52)	0.5 (71)
Holding torque at motor standstill [N.m (oz-in)]	0.11 (15.6)	0.15 (21)	0.19 (26)	0.25 (35)
Rotor inertia [J: $\mathrm{kg} \cdot \mathrm{m}^{2}\left(\mathrm{oz}-\mathrm{in}^{2}\right)$]	$35 \times 10^{-7}(0.192)$	$55 \times 10^{-7}(0.3)$	$71 \times 10^{-7}(0.39)$	$110 \times 10^{-7}(0.6)$
Rated current [A/phase]	1.8			
Setting speed range [r/min]	0.02 to 600			
Speed accuracy *	± 0.8 \%			
Power supply input	$24 \mathrm{VDC} \pm 10 \%, 2.5 \mathrm{~A}$			
Excitation mode	Microstepping			

* The actual operating speed is accurate within $\pm 0.8 \%$ against the set speed.
- CVD524Bロ-KSC

Motor model	PKP564FN24■2	PKP566FN24■2	PKP569FN24■2
Maximum static torque at excitation [$\mathrm{N} \cdot \mathrm{m}$ (oz-in)]	0.66 (93)	1.15 (163)	2.1 (290)
Holding torque at motor standstill [$\mathrm{N} \cdot \mathrm{m}$ (oz-in)]	0.33 (46)	0.58 (82)	1.1 (156)
Rotor inertia [J: kg $\mathrm{m}^{2}\left(\mathrm{oz}-\mathrm{in}^{2}\right)$]	$160 \times 10^{-7}(0.88)$	$290 \times 10^{-7}(1.59)$	$540 \times 10^{-7}(3)$
Rated current [A/phase]	2.4		
Setting speed range [r/min]	0.02 to 600		
Speed accuracy *	± 0.8 \%		
Power supply input	$24 \mathrm{VDC} \pm 10$ \%, 3.0 A		
Excitation mode	Microstepping		

[^0]| Pattern 1 | Speed1: Selected one from 256 different speeds |
| :--- | :--- |
| | Speed2: Fixed to a 10% speed of the Speed1 | Speed1: Selected one from 16 different speeds

Pattern 2
Speed2: Selected one from 16 different speeds in a range of 0.5 to 50% of the Speed 1

The actual operating speed is accurate within $\pm 0.8 \%$ against the set speed.

■ Pattern 1

0000．001	0000＇06	0000．08	0000\％ 0	0000＇09	0000＇0s	0000＇0t	0000＇0¢	0000．02	0000＇sı	0000＇01	0000＇8	0000＇9	0000＇t	0000＇て	0000 ${ }^{\text {L }}$	$0 \cdot 002$	\pm
00sL＇E6	0SLE＇ャ8	0000＇S \angle	0¢Z9＇s9	00sて＇9s	0SL8＇9t	000s＇LE	0sZl＇8z	00SL＇81	s 290 ＇tl	OSLE＇6	000S＇L	0¢Z9＇s	00SL＇ε	OSL8．	SLE6 0	¢ $\angle 81$	\exists
000¢＇＜8	00SL＇8L	0000＇0	00Sで19	000s＇zs	00SL＇Et	$0000 \times \varsigma \varepsilon$	00sで9て	000s＇く1	OSZ1＇を।	OOSL＇8	$0000 \cdot L$	00sて＇S	000s＇ε	OOSL＇し	OSL80	0＇s ${ }^{\text {c }}$	\square
00Sて＇18	0SZ1＇EL	0000＇s9	0¢ $\angle 8^{\prime} 95$	00SL＇8t	0¢て90\％	000S＇てを	OSLE＇tて	00Sで91	Sく81＇zl	0¢Z1＇8	000S＇9	O¢ 28 ＇t	00Sて＇E	OSZ9＇ı	SZ180	s＇z91	\bigcirc
$0000 \cdot ¢ \angle$	000S＇L9	0000＇09	000¢＇zs	0000＇st	000S＇LE	0000＇0¢	000¢＇Zて	0000 ＇sı	00Sでしし	000S＇L	0000＇9	000S＇t	0000＇ε	000S＇	00Sく＇0	0．0Sı	g
00SL＇89	0¢ $\angle 8 \cdot 19$	0000＇ss	0SZ1＇8t	00sて＇しt	OS $\angle \varepsilon^{\prime} \downarrow$ ¢	000s＇LZ	0sZ9\％0Z	00SL＇El	şıE＇0l	OS $\angle 8.9$	000s＇s	oszl＇t	00SL＇z	$0 ¢ \angle \varepsilon^{\prime} \downarrow$	S $\angle 89^{\circ} 0$	¢＇LEL	\forall
000s＇z9	00Sて＇9s	0000＇0S	00SL＇Et	000S＇LE	00Sで1E	0000＇sz	00Sく＇81	000s＇zl	0S $\angle \varepsilon^{\prime} 6$	00Sて＇9	0000＇s	00SL＇E	000s＇て	00Sで 1	O¢Z90	0’szl	6
00sて＇9s	0sz90s	0000＇St	0S $\angle \varepsilon \cdot 6 \varepsilon$	00SL＇દ	0¢マ1＇8て	000s＇zz	OSL891	00sz＇।	SLEセ＇8	0¢Z9＇s	000s＇t	$0 ¢ \angle \varepsilon \cdot \varepsilon$	00sでて	OSZI＇l	sz9s．0	s＇zıl	8
0000＇0s	0000＇St	00000t	0000 ¢¢	0000＇0¢	0000 ¢ ${ }^{\text {c }}$	00000\％	0000 S 1	000001	000SL	0000＇s	0000＇t	$0000 \cdot \varepsilon$	0000＇て	0000＇ 1	00050	$0 \cdot 001$	L
00sL＇Et	0¢LE＇6を	0000＇s ε	0¢マ9＇0¢	00sて＇9z	OSL8＇して	000s＇$\angle 1$	OSZ1＇Eı	O0SL＇8	sz9c＇9	OS $\angle \varepsilon^{\prime} \downarrow$	000s＇ε	0¢マ9＇て	00SL＇L	OSL8．0	S \angle ¢ $\mathrm{T}^{\text {O }}$	¢ <8	9
000¢ $\angle \varepsilon$	00sく＇をદ	0000．0¢	00sて＇9て	000s＇zて	00sぐ81	0000＇sı	00sでル	000S＇L	0¢Z9＇s	00Sく‘غ	$0000 \cdot \varepsilon$	00sでて	000＇ 1	OOSL＇0	OSLE 0	0．s L	5
00sで1E	0şl＇8て	0000＇sz	0¢ $\angle 8$＇して	00Sく＇81	0¢マ9＇s	000s＇zl	OSLE＇6	00Sて＇9	¢ $\angle 89{ }^{\circ} \mathrm{t}$	0¢マİغ	000s＇て	OSL8＇1	OOSでし	OSZ9＊0	SZIE＇0	¢＇29	†
0000 ¢	000s＇zて	0000．0z	000 $0^{\circ} \mathrm{Ll}$	0000＇s 1	000s＇て1	0000．01	000SL	0000 S	00SL＇E	000s＇z	0000 て	000S L	0000＇ 1	000s 0	00sで0	$0 \cdot 05$	ε
00Sく＇81	0S $\angle 8^{\prime} 91$	0000＇sı	0¢̧1＇EL	00Sて＇し1	0¢ $\angle \varepsilon^{\prime} 6$	000S＇L	OSZ9＇s	00SL＇E	š18＇て	OS $\angle 8.1$	000S 1	OSZI＇L	00s $\iota^{\circ} 0$	OSLE＇0	s $\angle 810$	¢ $\angle 1$	て
000s＇zl	00Sでい	0000\％ 0	OOSL＇8	000S＇L	OOSで9	0000＇s	OOSL＇$غ$	000s＇z	0S $\angle 8{ }^{\circ}$	00sで 1	0000＇l	OOSL＇0	000s＇0	OOSで0	OSZ1．0	0＇sz	1
00Sて＇9	O¢Z9＇s	0000＇s	$0 ¢ \angle \varepsilon^{\prime} \downarrow$	00SL＇E	OSZI＇\＆	000s＇て	OS $\angle 8^{\prime}$ ।	00Sて＇	SLE60	0¢Z900	000s 0	$0 ¢ \angle \varepsilon{ }^{\circ}$	00sで0	OSZ100	sz90＇0	s＇zl	0
\pm	\exists	\square	\bigcirc	g	\forall	6	8	L	9	5	†	ε	乙	1	0		
							（zpəədS） 4	Ms zadS／l×								पכ！！Ms	
									（u！	u！w／d	s！pə	7504	ว7	$10+$	ds pu	рәәd	
0000＇00ع	000000L2	000000tr	0000012	0000＇081	00000 0 S	0000．021	0000．06	0000．09	0000＇St	0000＇0¢	0000 ＇tz	0000 81	0000＇zl	$0000 \cdot 9$	0000＇ε	009	\pm
000S＇L8Z	00SL＇8SZ	0000．0をz	00sz＇10Z	000s＇ZLI	00SL＇Etl	0000＇ऽ 11	00sて＇98	0005＇$\angle 5$	OSZ1＇をt	00Sく＇82	0000＇६z	00Sでくl	000S＇ll	00Sく＇s	OSL8＇て	SLS	\exists
$0000 \cdot$ ¢ $<\tau$	000s＇くもて	0000．0zz	000s＇z61	0000＇s91	000S＇LEL	0000．011	000¢＇Z8	0000＇ss	00¢でしt	000s＇Lz	0000 ＇zて	000S＇91	0000＇l I	000s＇s	00SL＇Z	OSS	\square
000s＇z9z	00sで9をz	0000．012	00SL＇ 881	000S＇LSL	00sて＇ıદı	0000＇s01	O0SL＇8	000s＇zs	0S $\angle \varepsilon^{\prime} 6 \varepsilon$	00¢て＇9z	0000＇ı	00SL＇S	000s：01	00sz＇s	0¢マ9＇て	şs	\bigcirc
00000sz	0000＾szz	0000．002	$0000 \cdot \mathrm{SLL}$	00000 0 S	0000＇szl	0000．001	0000＇s \angle	00000 0 S	000s＇LE	0000＇sz	0000002	$0000 \cdot \mathrm{Sl}$	0000．01	0000＇s	000s＇z	005	g
000s＇LEz	00sL＇EIZ	0000．061	00sz＇991	000s＇zてl	00SL＇811	0000＇s6	00sでLL	000s＇Lt	0¢Z9＇ऽ	00SL＇દz	0000＇61	00sて＇ャレ	000s＇6	00SL＇t	OSLE＇Z	$s \angle t$	\forall
0000 ¢̧z	000s＇zoz	0000．081	000S＇LSI	0000 ¢¢ı	000s＇zıl	$0000 \cdot 06$	000s＇L9	0000＇st	00Sく＇をદ	000s＇zて	0000＇81	$0005^{\prime} \varepsilon 1$	0000＇6	000s＇t	00sて＇て	OSt	6
000s＇zIて	00sて＇161	0000．0 0	00sL＇8tl	000s＇LZL	00sて＇901	0000＇s8	O0SL＇E9	000s＇てt	OS $\angle 8 \cdot 1 \varepsilon$	00¢て＇して	$0000<1$	00Sく＇て1	000s＇8	00sz＇t	0sてI＇て	くで	8
0000002	0000．081	0000．091	000000tl	000002 I	0000．001	$0000 \cdot 08$	0000＇09	000000t	0000＇0¢	00000\％	0000＇91	0000 てl	0000＇8	0000＇t	0000＇z	00t	L
000s＇$\angle 81$	00S $\angle 891$	00000 0 ¢	00Sて＇ıEL	000s＇zıl	00SL＇E6	0000＇s \angle	00sz＇9s	000s＇LE	OSZ 1＇8Z	00SL＇81	0000＇sı	00Sでい	000S＇L	00SL＇ε	OS $\angle 8^{\prime} \mathrm{L}$	SLE	9
$0000 \cdot s \angle 1$	000S＇LSL	0000＇0tl	000s＇zてL	0000＇sol	000s 28	0000＇0	000s＇zs	0000＇¢ ε	00¢て＇9Z	$0005^{\circ} \mathrm{Ll}$	0000 ＇tl	0005＇01	0000＇L	000¢＇ε	00SL＇し	O¢\＆	\checkmark
000s＇z91	00sで9tl	0000．081	00sL＇Ell	000s＇L6	00sて＇18	0000＇s9	00SL＇8t	000s＇zع	$0 ¢ \angle \varepsilon \varepsilon^{\prime} \downarrow$ \％	00sz＇91	$0000 \cdot \varepsilon 1$	00SL＇6	0005＇9	00sて＇ε	Osz9 ।	SてE	\dagger
00000 0 S	0000＇¢ ¢ ا	0000．0Z1	0000 ¢0l	000006	$0000 \cdot \mathrm{SL}$	0000＇09	0000 5 ¢	0000＇0¢	000s＇zて	0000 ＇sı	$0000 \cdot \mathrm{ll}$	0000＇6	0000＇9	$0000 \cdot \varepsilon$	000S＇ 1	00ε	ε
000S＇LEL	00SL＇Ez।	0000．011	00sて＇96	000s＇z8	00SL＇89	0000＇ss	00sでしt	000s $\angle 2$	0¢z9．0z	00SL＇EL	0000＇ı 1	00sz＇8	000s＇s	OOSL＇Z	$0 ¢ \angle \varepsilon{ }^{\prime} \downarrow$	SLZ	乙
0000 ¢ ${ }^{\text {¢ }}$－	000s＇zıl	0000．001	0005＇L8	$0000 \cdot ¢ \angle$	000¢＇Z9	0000＇0s	000¢ $\angle \varepsilon$	0000 ＇sz	00SL＇81	000s＇zl	0000＇01	000\％\angle	0000＇s	000s＇て	00Sでし	OSZ	1
000s＇zıl	00sで101	$0000 \cdot 06$	00SL＇8L	000s＇＜9	00¢て＇9s	0000＇st	00Sく＇£	000s＇zz	OS $\angle 88^{\prime} 91$	00Sでい	0000＇6	O0SL＇9	000s＇t	00sz＇Z	OSZI＇l	szz	0
\pm	\exists	\square	\bigcirc	8	\forall	6	8	L	9	5	†	ε	乙	।	0	（ıpəəds） чว！！Ms IOdS／91×	
（zpəəds）чวı！Ms ZOdS／L×																	

- Unauthorized reproduction or copying of all or part of this manual is prohibited.
- Oriental Motor shall not be liable whatsoever for any problems relating to industrial property rights arising from use of any information, circuit, equipment or device provided or referenced in this manual.
- Characteristics, specifications and dimensions are subject to change without notice.
- While we make every effort to offer accurate information in the manual, we welcome your input. Should you find unclear descriptions, errors or omissions, please contact your nearest Oriental Motor sales office.
- Orientalmotor is a registered trademark or trademark of Oriental Motor Co., Ltd., in Japan and other countries.
© Copyright ORIENTAL MOTOR CO., LTD. 2017
Published in January 2022
- Please contact your nearest Oriental Motor office for further information.

ORIENTAL MOTOR U.S.A. CORP.
Technical Support Tel:800-468-3982 8:30am EST to 5:00pm PST (M-F) www.orientalmotor.com
ORIENTAL MOTOR (EUROPA) GmbH
Schiessstraße 44, 40549 Düsseldorf, Germany
Technical Support Tel:00 800/22 556622 www.orientalmotor.de
ORIENTAL MOTOR (UK) LTD.
Unit 5 Faraday Office Park, Rankine Road
Basingstoke, Hampshire RG24 8QB UK
Basingstoke, Hampsh
Tel:+44-1256347090
Tel:+44-1256347090
www.oriental-motor.co.uk
ORIENTAL MOTOR (FRANCE) SARL
Tel:+33-1 47869750
www.orientalmotor.fr
ORIENTAL MOTOR ITALIA s.r.I.
Tel:+39-02-93906347
www.orientalmotor.it
ORIENTAL MOTOR CO., LTD.
4-8-1 Higashiueno,Taito-ku,Tokyo 110-8536 Japan
Tel:+81-3-6744-0361
www.orientalmotor.co.jp

ORIENTAL MOTOR ASIA PACIFIC PTE. LTD.
Singapore
Tel:1800-842-0280
www.orientalmotor.com.sg
ORIENTAL MOTOR (MALAYSIA) SDN. BHD Tel:1800-806-161 www.orientalmotor.com.my ORIENTAL MOTOR (THAILAND) CO., LTD. Tel:1800-888-881 www.orientalmotor.co.th ORIENTAL MOTOR (INDIA) PVT. LTD. Tel:1800-120-1995 (For English) 1800-121-4149 (For Hindi) www.orientalmotor.co.in TAIWAN ORIENTAL MOTOR CO., LTD. Tel:0800-060708 www.orientalmotor.com.tw SHANGHAI ORIENTAL MOTOR CO., LTD. Tel:400-820-6516
www.orientalmotor.com.cn
INA ORIENTAL MOTOR CO., LTD.
Korea
Tel:080-777-2042 www.inaom.co.kr

[^0]: * The actual operating speed is accurate within $\pm 0.8 \%$ against the set speed.

