Orientalmotor

$\alpha_{\text {step }}$
AR Series/
Motorized actuator equipped with AR Series
AC power input/DC power input G GLEX Built-in controller type

USER MANUAL

Introduction

AC power input type

DC power input type

AC power input type/ DC power input type Common

Operation type and setting

Method of control via Modbus RTU (RS-485 communication)

Method of control via industrial network

Appendix

Thank you for purchasing an Oriental Motor product.
This Manual describes product handling procedures and safety precautions.

- Please read it thoroughly to ensure safe operation.
- Always keep the manual where it is readily available.
1 Introduction
1 Before use 8
2 Overview of the product9
3 Safety precautions 11
3-1 Safety precautions 11
3-2 Graphical symbols on the driver's front panel 13
3-3 Warning sign (AC input driver) 13
4 Precautions for use 14
2 AC power input type
1 System configuration 18
2 Preparation 19
2-1 Checking the product 19
2-2 How to identify the product model 20
2-3 Information about nameplate 22
2-4 Combinations of motors and drivers 22
2-5 Input/output power ratings, 23
2-6 Names and functions of parts 24
3 Installation 27
3-1 Location for installation 27
3-2 Installing the motor 27
3-3 Installing a load 28
3-4 Permissible radial load and permissible axial load 29
3-5 Installing the driver 32
3-6 Installing the regeneration resistor 33
4 Connection 34
4-1 Connection example 34
4-2 Grounding the motor and driver 35
4-3 Connecting the main power supply 36
4-4 Connecting the 24 VDC power supply, regeneration resistor and electromagnetic brake 37
4-5 Connecting the I/O signals 39
4-6 Connecting the data setter 42
4-7 Connecting the RS-485 cable 42
4-8 Noise elimination measures 43
4-9 Conformity to the EMC Directive 44
5 Cables 46
5-1 Connection cable set 46
5-2 Extension cable set 47
5-3 Communication cable for the support software 48
5-4 RS-485 cable 48
5-5 I/O signal cable 48
6 Accessories 49
6-1 Setting tools 49
6-2 Wiring support tools. 49

3 DC power input type

1 System configuration 52
2 Preparation 53
2-1 Checking the product 53
2-2 How to identify the product model 54
2-3 Information about nameplate 55
2-4 Combinations of motors and drivers 56
2-5 Input/output power ratings 57
2-6 Names and functions of parts 57
3 Installation 60
3-1 Location for installation 60
3-2 Installing the motor 60
3-3 Installing a load 61
3-4 Permissible radial load and permissible axial load 62
3-5 Installing the driver 65
4 Connection 67
4-1 Connection example 67
4-2 Grounding the motor and the driver. 68
4-3 Connecting the power supply and electromagnetic brake 68
4-4 Connecting the I/O signals 69
4-5 Connecting the data setter 73
4-6 Connecting the RS-485 cable 73
4-7 Noise elimination measures. 74
4-8 Conformity to the EMC Directive 75
5 Cables 77
5-1 Connection cable set 77
5-2 Extension cable set 78
5-3 Communication cable for the support software 79
5-4 RS-485 cable 79
5-5 I/O signal cable 80
6 Accessories 81
6-1 Setting tools 81
6-2 Wiring support tools. 81
4 AC power input type/DC power input type Common
1 Explanation of I/O signals 84
1-1 Assignment of direct I/O 84
1-2 Assignment of remote I/O 88
1-3 Input signals 92
1-4 Output signals 98
1-5 Sensor inputs. 103
1-6 General signals (R0 to R15) 104
2 Method of control via I/O 105
2-1 Guidance 105
2-2 Operation data. 109
2-3 Parameter 110
3 Operation using the OPX-2A 121
3-1 Overview of the OPX-2A. 121
3-2 Names and functions of parts 122
3-3 How to read the display 122
3-4 OPX-2A error display 123
3-5 Screen transitions 124
3-6 Monitor mode 128
3-7 Data mode 129
3-8 Parameter mode. 132
3-9 Test mode 139
3-10 Copy mode 141
4 Inspection and maintenance 142
4-1 Inspection 142
4-2 Warranty 142
4-3 Disposal 142
5 Alarms and warnings 143
5-1 Alarms 143
5-2 Warning 150
5-3 Communication errors 151
6 Troubleshooting and remedial actions 152
5 Operation type and setting
1 Guidance 154
2 Adjustment and setting 158
2-1 Resolution 158
2-2 Operating current 159
2-3 Standstill current 159
2-4 Acceleration/deceleration rate and acceleration/deceleration time. 160
2-5 Smooth drive 160
2-6 Speed filter. 161
2-7 Moving average filter 162
2-8 Speed error gain 162
2-9 Control mode 163
2-10 Position loop gain, speed loop gain, speed loop integral time constant 163
3 Operation type and function list 164
4 Positioning operation 165
4-1 Operation data. 165
4-2 Starting method of positioning operation. 167
4-3 Operation function 172
4-4 Push-motion operation 176
5 Return-to-home operation 179
5-1 Operation sequence 182
5-2 Position preset 187
6 Continuous operation 188
6-1 Starting method of continuous operation 189
6-2 Variable speed operation 191
7 Other operation 193
7-1 JOG operation 193
7-2 Test operation 194
7-3 Automatic return operation. 195
7-4 Stop operation 196
8 Coordination management 198
8-1 Position coordinate management 198
8-2 Wrap function 198
Method of control via Modbus RTU (RS-485 communication)
1 Guidance 202
2 Communication specifications 208
3 Setting the switches 211
3-1 Setting the AC power input 211
3-2 Setting the DC power input 213
4 Setting of RS-485 communication 215
5 Communication mode and communication timing 216
5-1 Communication mode 216
5-2 Communication timing 216
6 Message 218
6-1 Query 218
6-2 Response. 220
7 Function code 222
7-1 Reading from a holding register(s) (03h) 222
7-2 Writing to a holding register (06h) 223
7-3 Diagnosis (08h) 224
7-4 Writing to multiple holding registers (10h) 225
8 Register address list. 227
8-1 Operation commands 227
8-2 Maintenance commands 229
8-3 Monitor commands 230
8-4 Parameter R/W commands 233
9 Group send 244
10 Setting example of the operation 246
10-1 Positioning operation. 246
10-2 Continuous operation. 249
10-3 Return-to-home operation. 251
11 Detection of communication errors 253
11-1 Communication errors 253
11-2 Alarms and warnings. 253
12 Timing charts 254
7 Method of control via industrial network
1 Setting the switches 258
1-1 Setting the AC power input 258
1-2 Setting the DC power input. 260
2 Method of control via CC-Link communication. 262
2-1 Guidance. 262
2-2 Operation example of command selection method 267
2-3 Operation example of command fixation method 274
3 Method of control via EtherCAT communication. 281
3-1 Guidance. 281
3-2 Basic operating procedures 287
4 Method of control via MECHATROLINK communication 290
4-1 Guidance 290
4-2 Basic operation procedure 295
4-3 Field map of the NETCO1-M2 298
4-4 Field map of the NETCO1-M3 299
4-5 Communication formats 300
5 Details of remote I/O 302
5-1 Input signals to the driver 302
5-2 Output signals from the driver 303
6 Command code list 305
6-1 Group function 305
6-2 Maintenance command 306
6-3 Monitor command 307
6-4 Operation data. 309
6-5 User parameters 310
8 Appendix
1 Timing charts 320
2 Specifications 331
3 General specifications 332
3-1 AC power input 332
3-2 DC power input 333
4 Regulations and standards 334
4-1 UL Standards, CSA Standards 334
4-2 CE Marking (AC power input type) 334
4-3 CE Marking (DC power input type) 335
4-4 Republic of Korea, Radio Waves Act. 335

1 Introduction

This part explains the product overview and safety precautions in addition to the types and descriptions about operating manuals.

Table of contents

1 Before use 8
2 Overview of the product 9
3 Safety precautions 11
3-1 Safety precautions 11
3-2 Graphical symbols on the driver's front panel. 13
3-3 Warning sign (AC input driver) 13
4 Precautions for use 14

1 Before use

Only qualified personnel of electrical and mechanical engineering should work with the product.
Use the product correctly after thoroughly reading the section "3 Safety precautions" on p.11. In addition, be sure to observe the contents described in warning, caution, and note in this manual.
The product described in this manual is designed and manufactured to be incorporated in general industrial equipment. Do not use for any other purpose. Oriental Motor Co., Ltd. is not responsible for any compensation for damage caused through failure to observe this warning.

Related operating manuals
For operating manuals, download from Oriental Motor Website Download Page or contact your nearest Oriental Motor sales office.

- AR Series/Motorized Actuator equipped with AR Series USER MANUAL (this document)

Read the following operating manuals for motorized actuators.

- OPERATING MANUAL Actuator Edition
- Motorized Actuator OPERATING MANUAL Function Setting Edition

About terms and units

Terms and units to be used vary depending on a motor or motorized actuator. This manual explains by using the terms of the motor.
When the motorized actuator is used, read this manual by replacing the terms.

	Motor	Motorized actuator
Term	Torque	Thrust
	Moment of inertia	Mass
	Rotation	Movement
	CW direction	FWD direction
	CCW direction	RVS direction
	Rotation speed	Speed
	Resolution	Minimum travel amount
Unit	$\mathrm{N} \cdot \mathrm{m}$	N
	$\mathrm{kHz} / \mathrm{s}$	$\mathrm{m} / \mathrm{s}^{2}$

2 Overview of the product

The AR Series consists of a driver with built-in controller function and a motor with built-in rotor position detection sensor. This product can be controlled via I/O, Modbus (RTU), or industrial network communication using the network converter. Operation data and parameters can be set using any of our support software MEXE02, data setter
OPX-2A, or RS-485 communication.
Main features

- Introducing closed loop control

The AR Series can continue its operation even upon encountering quick acceleration or an abrupt change in load. Monitoring the speed and amount of rotation while the motor is running, the AR Series performs the closed-loop control under overload and similar conditions to continue its operation at the maximum torque.

- Three operation types

Positioning operation, return-to-home operation, and continuous operation can be performed.
Up to 64 operation data points can be set, and multi-point positioning is also possible.

- Compatible with Modbus RTU (RS-485 communication)

Operation data and parameters can be set from the host controller, and start and stop commands of operation can be executed as well.
Up to 31 drivers can be connected to one client.

- Energy-saving

Motor and driver losses have been substantially reduced to achieve low heat generation and save energy. Since the motor and driver generate much less heat, they can now be operated for longer hours at high speed, which was not possible with conventional motors/drivers.

- Supporting sink output and source output

The driver supports both the current sink output circuit and the current source output circuit.

- Automatic control of the electromagnetic brake

The driver automatically controls the electromagnetic brake, so the control signal input or the troublesome ladder logic design can be saved.

- Alarm and warning functions

The driver provides alarms that are designed to protect the driver from overheating, poor connection, error in operation, etc. (protective functions), as well as warnings that are output before the corresponding alarms generate (warning functions).

Accessories

Operation data and parameters can be set using any of the support software MEXEO2, data setter OPX-2A, or RS-485 communication. Provide the MEXE02 or OPX-2A as necessary.

- MEXEO2The MEXEO2 can be downloaded from Oriental Motor Website Download Page.

When the MEXEO2 is used, our communication cable for the support software CC05IF-USB is needed to connect a PC and driver. Be sure to purchase it.

- OPX-2A......This product can be purchased separately.

- Related products

The AR Series FLEX built-in controller type can be used via various network when connecting to our network converter.

Network converter model	Supported network
NETC01-CC	CC-Link version 1.1
NETC02-CC	CC-Link version 2
NETC01-ECT	EtherCAT

Network converter model	Supported network
NETC01-M2	MECHATROLINK-II
NETC01-M3	MECHATROLINK-III

Function list

Main functions

| Return-to-home operation
 [Setting by parameters] | \bullet 2-sensor mode | \bullet Push-mode |
| :---: | :--- | :--- | :--- |
| • 3 -sensor mode | \bullet | Data setting mode (Position preset) |

Other operations
[Setting by parameters]

- JOG operation

Automatic return operation

Support functions

[Setting by parameters]	Protective function Alarm detection Warning detection	I/O function Input function selection Output function selection Input logic level setting Home offset External sensor signal detection
	Coordination setting Resolution (Electronic gear) Wrap function Motor rotation direction	Stop operation STOP input action Hardware overtravel
Software overtravel		

External interface

| | \bullet Monitor function | \bullet | Data storing | \bulletTest function
 Data setter | \bullet Operation data setting |
| :--- | :--- | :--- | :--- | :--- | :--- | | \bullet |
| :--- |
| |
| |
| |
| |
| |
| |
| |
| |

	\bullet Operation start	\bullet Monitor function
RS-485 communication	\bullet Operation data setting	\bullet Maintenance function
	\bullet Parameter setting	

3 Safety precautions

3-1 Safety precautions

The precautions described below are intended to ensure the safe and correct use of the product, and to prevent the customer and others from exposure to the risk of injury. Use the product only after carefully reading and fully understanding these instructions.

| Nand |
| :--- | :--- | | Handling the product without observing the instructions that accompany a "WARNING" |
| :--- |
| symbol may result in serious injury or death. |

AWARNING

AC power input/DC power input common

General

- Do not use the product in explosive or corrosive environments, in the presence of flammable gases, in places subjected to splashing water, or near combustibles. Doing so may result in fire, electric shock, or injury.
- Assign qualified personnel to the task of installing, wiring, operating/controlling, inspecting, and troubleshooting the product. Handling by unqualified personnel may result in fire, electric shock, injury, or damage to equipment.
- Do not transport, install, connect or inspect the product while the power is supplied. Always turn the power off before carrying out these operations. Failure to do so may result in electric shock.
- Take measures to keep the moving part in position if the product is used in vertical operations such as elevating equipment. The motor loses holding torque when the power is shut off, allowing the moving parts to fall and possibly cause injury or damage to equipment.
- The brake mechanism of an electromagnetic brake motor is used for the purpose to hold the moving part and motor in position. Do not use it as a braking/safety brake. Doing so may result in injury or damage to the equipment.
- When an alarm is generated in the driver (any of the driver's protective functions is triggered), the motor will stop and lose its holding torque. Accordingly, provide measures to hold the moving part in place in the event of an alarm. Failure to do so may result in injury or damage to equipment.
- When an alarm is generated in the driver (any of the driver's protective functions is triggered), remove the cause before clearing the alarm. Continuing the operation without removing the cause of the problem may cause malfunction of the motor and driver, leading to injury or damage to equipment.

Installation

- Install the motor and driver inside an enclosure. Failure to do so may result in electric shock or injury.

Connection

- Always keep the power supply voltage of the driver within the specified range. Failure to do so may result in fire or electric shock.
- Connect the cables securely according to the wiring diagram. Failure to do so may result in fire or electric shock.
- Do not forcibly bend, pull, or pinch the cable. Doing so may result in fire or electric shock.
- Turn off the power to both the PC and driver before connecting your PC to the driver. Failure to do so may result in electric shock.

Operation

- Turn off the driver power supply in the event of a power failure. Otherwise, the motor may suddenly start when the power is restored, causing injury or damage to equipment.
- Take safety measures in the event of a momentary voltage drop. This may cause the motor to stop or reduce the holding force or rotational torque, resulting in injury or damage to equipment.
- Do not remove the motor excitation during operation. Doing so may cause the motor to stop and lose the holding force, resulting in injury or damage to equipment.

Repair, disassembly, and modification

- Do not disassemble or modify the motor and driver. Doing so may result in electric shock or injury. Refer all such internal inspections and repairs to the Oriental Motor sales office from which you purchased the product.

AC power input

Installation

- Be sure to ground the motor and the driver as they are Class I equipment. Failure to do so may result in electric shock.

Connection

- Use a 24 VDC power supply that has been given reinforced insulation between the primary side and secondary side. Failure to do so may cause electric shock.

Maintenance and inspection

- Do not touch the connection terminal of the driver while the power is supplied or for at least 10 minutes after turning off the power. Turn off the power to check the CHARGE LED being turned off before starting connection or inspection. The residual voltage may cause electric shock.

■ DC power input

Connection

- For the driver power supply, use a DC power supply with reinforced insulation on its primary and secondary sides. Failure to do so may result in electric shock.

\triangle CAUTION

AC power input/DC power input common

General

- Do not use the motor and driver beyond its specifications. Doing so may result in electric shock, injury, or damage to equipment.
- Keep your fingers and objects out of the openings in the motor and driver. Failure to do so may result in fire, electric shock, or injury.
- Do not touch the motor and driver during operation or immediately after stopping. The surface is hot, and this may cause a skin burn(s).

Transportation

- Do not carry the motor by holding the output shaft or cable. Doing so may cause injury.

Installation

- Provide a cover over the rotating parts (output shaft) of the motor. Failure to do so may result in injury.
- Do not leave anything around the motor and driver that would obstruct ventilation. Doing so may result in damage to equipment.

Operation

- Use a motor and driver only in the specified combination. An incorrect combination may cause a fire.
- Provide an emergency-stop device or emergency-stop circuit external to the equipment so that the entire equipment will operate safely in the event of a system failure or malfunction. Failure to do so may result in injury.
- Before supplying power to the driver, turn all input signals to the driver to OFF. Otherwise, the motor may suddenly start when the power is turned on, leading to injury or damage to equipment.
- When moving the moving part manually, put the motor into a non-excitation state. Continuing the work while the motor is in an excitation state may result in injury.
- Do not touch the rotating part (output shaft) during operation. Doing so may cause injury.
- When an abnormal condition has occurred, immediately stop operation to turn off the main power supply and the control power supply. Failure to do so may result in fire, electric shock, or injury.
- The motor surface temperature may exceed $70^{\circ} \mathrm{C}\left(158^{\circ} \mathrm{F}\right)$ even under normal operating conditions. If the operator is allowed to approach the motor in operation, affix a warning label shown in the figure on a conspicuous position. Failure to do so may result in skin burn(s).
- Use only an insulated slotted screwdriver to adjust the driver's switches. Failure to do so may result Warning label in electric shock.

Maintenance and inspection

－Do not touch the terminals while conducting the insulation resistance measurement or dielectric strength test． Doing so may cause electric shock．

AC power input

Connection

－The data edit connector（CN4）and RS－485 connectors（CN6／CN7）are not insulated．When grounding the positive terminal of the power supply，do not connect any equipment（PC，etc．）whose negative terminal is grounded． Doing so may cause the driver and these equipment to short，damaging both．

DC power input

Connection

－The power supply connector（CN1），data edit connector（CN3），and RS－485 connectors（CN6／CN7）are not insulated． When grounding the positive terminal of the power supply，do not connect any equipment（PC，etc．）whose negative terminal is grounded．Doing so may cause the driver and these equipment to short，damaging both．
－When connecting，check the silk screen of the driver and pay attention to the polarity of the power supply． Reverse－polarity connection may cause damage to the driver．The power－supply circuit and the RS－485 communication circuit are not insulated．Therefore，when controlling multiple drivers via RS－485 communication， the reverse polarity of the power supply will cause a short circuit and may result in damage to the drivers．

Operation

－For the power supply to the electromagnetic brake，use a DC power supply with reinforced insulation on its primary and secondary sides．Failure to do so may result in electric shock．

3－2 Graphical symbols on the driver＇s front panel

$\frac{1}{2}$	AWARNING	This is the Protective Earth Terminal．Be sure to ground because improper grounding may result in electric shock．
$A \Delta$		
WARNING	A high voltage is applied to the motor connector（CN2）and the main power supply input terminal（CN3）．Do not touch these terminals while the power is on．Doing so may result in fire or electric shock． （AC power input）	

3－3 Warning sign（AC input driver）

A warning about handling precautions is described on the driver． Be sure to observe the description contents when handling the product．

Electrical hazard warning label

Material：PET

4 Precautions for use

This chapter covers restrictions and requirements the user should consider when using the product.

AC power input/DC power input common

- Be sure to use our cable to connect the motor and the driver.

Check the cable models on p. 46 (AC power input), p. 77 (DC power input).
Note Precautions for when the connection cable is used are described on p.16. Be sure to read before use.

- When conducting the insulation resistance measurement or the dielectric strength test, be sure to separate the connection between the motor and the driver.
Conducting the insulation resistance measurement or dielectric strength test with the motor and driver connected may result in damage to the product.
- Do not apply a radial load and axial load in excess of the specified permissible limit.

Operating the motor under an excessive radial load or axial load may damage the motor bearings (ball bearings). Be sure to operate the motor within the specified permissible limit of radial load and axial load. For details, refer to p. 29 (AC power input) or p. 62 (DC power input).

- Use the motor in conditions where the motor surface temperature does not exceed $100^{\circ} \mathrm{C}\left(212{ }^{\circ} \mathrm{F}\right)$.

The driver has an overheat protection function, but the motor has no such feature. The motor surface temperature may exceed $100^{\circ} \mathrm{C}\left(212^{\circ} \mathrm{F}\right)$ under certain conditions (ambient temperature, operating speed, duty cycle, etc.). To prevent the motor bearings (ball bearings) from reaching its usable life quickly, use the motor in conditions where the surface temperature does not exceed $100^{\circ} \mathrm{C}\left(212^{\circ} \mathrm{F}\right)$.
Use the geared motor in a condition where the gear case temperature does not exceed $70^{\circ} \mathrm{C}\left(158{ }^{\circ} \mathrm{F}\right)$, in order to prevent deterioration of grease and parts in the gear case.
If the motor is to be operated continuously, install the motor in a location where heat dissipation capacity equivalent to a level achieved with a heat sink [made of aluminum, $250 \times 250 \times 6 \mathrm{~mm}(9.84 \times 9.84 \times 0.24 \mathrm{in}$.)] is ensured.

- Holding torque at standstill

The motor holding torque is reduced by the current cutback function of the driver at motor standstill. When selecting a motor, check the holding torque at motor standstill in the specifications on the catalog.

- Do not use the electromagnetic brake for braking or as a safety brake.

Do not use the electromagnetic brake as a means to decelerate and stop the motor. The brake hub of the electromagnetic brake will wear significantly and the braking force will drop. Since the power off activated type electromagnetic brake is equipped, it helps maintain the position of the load when the power is cut off, but this brake cannot securely hold the load in place. Accordingly, do not use the electromagnetic brake as a safety brake. To use the electromagnetic brake to hold the load in place, do so after the motor has stopped.

- Double shaft type motor

Do not apply a load torque, radial load, or axial load to the rear shaft on the opposite side of the motor output shaft.

- Noise elimination measures

For measures with regard to noise, refer to p. 43 (AC power input) or p. 74 (DC power input).

- Storing data in non-volatile memory

Do not turn off the main power supply or DC power supply while writing the data to the non-volatile memory, and also do not turn off for 5 seconds after the completion of writing the data. Doing so may abort writing the data and cause an alarm of EEPROM error to generate. The non-volatile memory can be rewritten approximately 100,000 times.

- Motor excitation at power ON

The motor is excited when the DC power supply and main power supply are on. If the motor is required to be in a non-excitation state when turning on the power, assign the C-ON input to direct I/O or remote I/O.

- Rotating direction of output shaft

The motor output shaft rotates in the figure at the factory setting. The rotation direction can be changed by the parameter.

- When setting the position (travel amount) to a positive value

- When setting the position (travel amount) to a negative value

The relationship between the rotating direction of the motor output shaft and that of the gear output shaft changes as follows, depending on the gear type and gear ratio. Check with the table.

Type of gear	Gear ratio	Rotating direction of the gear output shaft (relative to the motor output shaft)
TH geared Motor frame size: $28 \mathrm{~mm}(1.10 \mathrm{in})$.	20,30	Opposite direction
TH geared Motor frame size: $42 \mathrm{~mm}(1.65 \mathrm{in})$. $60 \mathrm{~mm}(2.36 \mathrm{in})$. $90 \mathrm{~mm}(3.54 \mathrm{in})$.	$3.6,7.2,10$	Same direction
FC geared, PS geared, PN geared	All gear ratios	Same direction
Harmonic geared	All gear ratios	Opposite direction

- Peak torque of geared motor

Always operate the geared motor under a load not exceeding the peak torque. If the load exceeds the peak torque, the gear part will be damaged.

- Do not perform push-motion operation with geared motors.

Doing so may result in damage to the motor or gear part.

- About grease of geared motor

On rare occasions, a small amount of grease may ooze out from the geared motor. If there is concern over possible environmental damage resulting from the leakage of grease, check for grease stains during regular inspections. Alternatively, install an oil pan or other device to prevent leakage from causing further damage. Oil leakage may lead to problems in the customer's equipment or products.

- AC power input

- Preventing leakage current

Stray capacitance exists between the driver's current-carrying line and other current-carrying lines, the earth and the motor, respectively. A high-frequency current may leak out through such capacitance, having a detrimental effect on the surrounding equipment. The actual leakage current depends on the driver's switching frequency, the length of wiring between the driver and motor, and so on. When providing a leakage current breaker, use the following products, for example, which have high-frequency signal protection:
Mitsubishi Electric Corporation: NV series

- When an alarm of overvoltage protection is generated

If vertical drive (gravitational operation) such as elevator applications is performed or if sudden start-stop operation of a large inertia load is repeated frequently, an alarm of overvoltage protection may be detected. If an alarm of overvoltage protection is detected, adjust the driving condition or use our regeneration resistor RGB100.

- Note on connecting a power supply whose positive terminal is grounded

The data edit connector (CN4) and RS-485 connectors (CN6/CN7) are not insulated. When grounding the positive terminal of the power supply, do not connect any equipment (PC, etc.) whose negative terminal is grounded. Doing so may cause the driver and these equipment to short, damaging both. Use the OPX-2A to set data, etc.

- DC power input

- When an alarm of overvoltage protection is generated

If vertical drive (gravitational operation) such as elevator applications is performed or if sudden start-stop operation of a large inertia load is repeated frequently, an alarm of overvoltage protection may be detected. If the overvoltage protection alarm is detected, adjust the driving condition.

- Note on connecting a power supply whose positive terminal is grounded

The power supply connector (CN1), data edit connector (CN3), and RS-485 connectors (CN6/CN7) are not insulated. When grounding the positive terminal of the power supply, do not connect any equipment (PC , etc.) whose negative terminal is grounded. Doing so may cause the driver and these equipment to short, damaging both. Use the OPX-2A to set data, etc.

Notes when the connection cable is used

Note the following points when our cable is used.

- When inserting the connector

Hold the connector main body, and insert it in straight securely.Inserting the connector in an inclined state may result in damage to terminals or a connection failure.

- When pulling out the connector

Pull out the connector in straight while releasing the lock part of the connector. Pulling out the connector with holding the cable may result in damage to the connector.

- Bending radius of cable

Use the cable in a state where the bending radius of the cable is more than six times of the cable diameter.
Do not bend the lead wires part or fix it with a clamp. Doing so may cause damage to the connector.

- How to fix the cable

Fix the cable near the connectors at two places as shown in the figure or fix it with a wide clamp to take measures to prevent stress from being applied to the connectors.

2 AC power input type

This part explains contents specific to the AR Series AC power input type.

Table of contents

1 System configuration 18
2 Preparation 19
2-1 Checking the product 19
2-2 How to identify the product model 20
2-3 Information about nameplate 22
2-4 Combinations of motors and drivers 22
2-5 Input/output power ratings 23
2-6 Names and functions of parts 24
3 Installation 27
3-1 Location for installation 27
3-2 Installing the motor 27
3-3 Installing a load 28
3-4 Permissible radial load and permissible axial load 29
3-5 Installing the driver 32
3-6 Installing the regeneration resistor 33

4 Connection .. 34
4-1 Connection example. 34
4-2 Grounding the motor and driver 35
4-3 Connecting the main power supply 36
4-4 Connecting the 24 VDC power supply, regeneration resistor and electromagnetic brake. 37
4-5 Connecting the I/O signals 39
4-6 Connecting the data setter 42
4-7 Connecting the RS-485 cable 42
4-8 Noise elimination measures 43
4-9 Conformity to the EMC Directive 44
5 Cables 46
5-1 Connection cable set 46
5-2 Extension cable set 47
5-3 Communication cable for the support software 48
5-4 RS-485 cable 48
5-5 I/O signal cable 48
6 Accessories 49
6-1 Setting tools 49
6-2 Wiring support tools 49

1 System configuration

*1 This cable is provided as our product. Purchase it separately.
*2 The PC must be supplied by the user. Use our communication cable for the support software CC05IF-USB when connecting the PC and driver.
*3 These products are provided as our accessories.

2 Preparation

This chapter explains the items you should check, as well as the name and function of each part.

2-1 Checking the product

Verify that the items listed below are included. Report any missing or damaged items to the Oriental Motor sales office from which you purchased the product.

- Motor
- Motor ... 1 unit
- Parallel key ... 1 pc. *1
- Instructions and Precautions for Safe Use 1 copy
- APPENDIX UL Standards for AR Series 1 copy *2
*1 Included with geared types; except for the ARM46-T and ARM66-T.
*2 Included with products conform to the UL Standards.
- Driver
- Driver 1 unit
- CN1 connector (6 pins) 1 pc.
- CN3 connector (5 pins) 1 pc.
- CN5 connector (5 pins) 1 pc.
- CN8 connector (9 pins) 1 pc.
- CN9 connector (7 pins) 1 pc.
- Connector wiring lever (for CN3) 1 pc.
- Instructions and Precautions for Safe Use 1 copy

Included connector model

Type	Model (Manufacturer)
CN1 connector	MC1,5/6-STF-3,5 (PHOENIX CONTACT GmbH \& Co. KG)
CN3 connector	721-205 (WAGO Corporation)
CN5 connector	FK-MC0,5/5-ST-2,5 (PHOENIX CONTACT GmbH \& Co. KG)
CN8 connector	FK-MC0,5/9-ST-2,5 (PHOENIX CONTACT GmbH \& Co. KG)
CN9 connector	FK-MC0,5/7-ST-2,5 (PHOENIX CONTACT GmbH \& Co. KG)

2-2 How to identify the product model

Check the model name of the motor and driver against the number shown on the nameplate. Refer to p .22 for how to identify the nameplate.

Motor

- Standard type
$\frac{\text { ARM }}{1} \frac{\mathbf{6}}{2} \frac{\mathbf{6}}{3} \frac{\mathbf{A}}{4} \frac{\mathbf{0}}{5} \frac{\mathbf{C}}{6}$
- Geared type (except for FC geared type)
$\frac{\text { ARM }}{1} \frac{6}{2}-\frac{6}{3} \frac{\mathrm{~A}}{4} \frac{\mathrm{C}}{6}-\frac{\mathrm{T}}{7} \frac{\mathbf{7 . 2}}{8} \frac{\mathrm{U}}{9}$

1	Series name	ARM: AR Series motor
2	Motor frame size	4: 42 mm (1.65 in .) 6: 60 mm (2.36 in.) 9: 85 mm (3.35 in .) [90 mm (3.54 in.$)$ for geared type]
3	Motor length	
4	Motor type	A: Single shaft B: Double shaft M: With electromagnetic brake
5	Additional function	\mathbf{O} : Round shaft without shaft flat Blank: Round shaft with shaft flat on one side
6	Motor power supply input	C: AC power input type
7	Type of gear	T: TH geared PS: PS geared N: PN geared H: Harmonic geared Blank: Standard
8	Gear ratio	Indicates a number representing the gear ratio. Refer to the following table for the gear type and gear ratio.
9	Cable outlet direction* (TH geared type only)	U: Upward direction L: Leftward direction R: Rightward direction Blank: Downward direction

* The cable outlet direction represents the one as viewed from the output shaft side in a state of placing it upward.

Type of gear ratio

Type of gear	Gear ratio
TH geared	$3.6,7.2,10,20,30$
PS geared	$5,7.2\left(^{*}\right), 10,25,36,50$
PN geared	ARM46: 5, 7.2, 10 ARM66, ARM98: $5,7.2,10,25,36,50$
Harmonic geared	50,100

[^0]
－FC geared type

$\frac{\text { ARM }}{1} \frac{6}{2} \frac{6}{3} \frac{\mathrm{~A}}{4} \frac{\mathrm{C}}{5}-\frac{\mathrm{FC}}{6} \frac{7.2}{7} \frac{\mathrm{~L}}{8} \frac{\mathrm{~A}}{9}$

1	Series name	ARM：AR Series motor
2	Motor frame size	$\begin{aligned} & \text { 4: } 42 \mathrm{~mm} \text { (1.65 in.) } \\ & \text { 6: } 60 \mathrm{~mm} \text { (2.36 in.) } \end{aligned}$
3	Motor length	
4	Motor type	A：Single shaft
5	Motor power supply input	C：AC power input type
6	Type of gear	FC：FC geared
7	Gear ratio	7．2，10，20， 30
8	Output shaft direction＊	L：L shaft（Leftward direction） R：R shaft（Rightward direction）
9	Motor identification	A：Solid shaft

＊The direction of the output shaft represents that as the view from the motor cable outlet side．
L：L shaft（Leftward direction）

R：R shaft（Rightward direction）

Driver

$\frac{\text { ARD }}{1}-\frac{C}{2} \frac{\mathbf{D}}{3} \frac{\mathbf{2}}{4}$

1	Series name	ARD：AR Series driver
2	Power supply input	A：Single－phase 100－120 V C：Single－phase 200－240 V
3	Type	D：Built－in controller type
4	Reference number	

2-3 Information about nameplate

The figure shows an example.

memo The position describing the information may vary depending on the product.

2-4 Combinations of motors and drivers

Standard type

Single shaft	
Motor model	Driver model
ARM46AC	$\begin{aligned} & \text { ARD-AD2 } \\ & \text { ARD-CD2 } \end{aligned}$
ARM46A0C	
ARM66AC	
ARM66A0C	
ARM69AC	
ARM69A0C	
ARM98AC	
ARM98A0C	
ARM911AC	
ARM911A0C	

Double shaft	
Motor model	Driver model
ARM46BC	$\begin{aligned} & \text { ARD-AD2 } \\ & \text { ARD-CD2 } \end{aligned}$
ARM46B0C	
ARM66BC	
ARM66B0C	
ARM69BC	
ARM69B0C	
ARM98BC	
ARM98B0C	
ARM911BC	
ARM911B0C	

With electromagnetic brake	
Motor model	Driver model
ARM46MC	$\begin{aligned} & \text { ARD-AD2 } \\ & \text { ARD-CD2 } \end{aligned}$
ARM46M0C	
ARM66MC	
ARM66M0C	
ARM69MC	
ARM69M0C	
ARM98MC	
ARM98M0C	

Geared type

- The box (\bullet) in the model name indicates a number representing the gear ratio.
- The box $(\boldsymbol{)}$ in the model name indicates \mathbf{U} (upward direction), \mathbf{L} (left direction), or \mathbf{R} (right direction) representing the cable outlet direction.
The box $(\boldsymbol{)}$ is blank when the cable outlet direction is downward.

Type of gear	Single shaft		With electromagnetic brake	
	Motor model	Driver model	Motor model	Driver model
TH geared	ARM46AC-T•	$\begin{aligned} & \text { ARD-AD2 } \\ & \text { ARD-CD2 } \end{aligned}$	ARM46MC-T*	$\begin{aligned} & \text { ARD-AD2 } \\ & \text { ARD-CD2 } \end{aligned}$
	ARM66AC-T•		ARM66MC-Te	
	ARM98AC-T \bullet		ARM98MC-T॰	
FC geared	ARM46AC-FCeLA	$\begin{aligned} & \text { ARD-AD2 } \\ & \text { ARD-CD2 } \end{aligned}$	-	-
	ARM46AC-FC•RA			
	ARM66AC-FCeLA			
	ARM66AC-FC•RA			
PS geared	ARM46AC-PS•	$\begin{aligned} & \text { ARD-AD2 } \\ & \text { ARD-CD2 } \end{aligned}$	ARM46MC-PS*	$\begin{aligned} & \text { ARD-AD2 } \\ & \text { ARD-CD2 } \end{aligned}$
	ARM66AC-PS		ARM66MC-PS*	
	ARM98AC-PS•		ARM98MC-PS•	
PN geared	ARM46AC-N•	$\begin{aligned} & \text { ARD-AD2 } \\ & \text { ARD-CD2 } \end{aligned}$	ARM46MC-N•	$\begin{aligned} & \text { ARD-AD2 } \\ & \text { ARD-CD2 } \end{aligned}$
	ARM66AC-N0		ARM66MC-N•	
	ARM98AC-N0		ARM98MC-N0	
Harmonic geared	ARM46AC-H•	$\begin{aligned} & \text { ARD-AD2 } \\ & \text { ARD-CD2 } \end{aligned}$	ARM46MC-H•	$\begin{aligned} & \text { ARD-AD2 } \\ & \text { ARD-CD2 } \end{aligned}$
	ARM66AC-H•		ARM66MC-H•	
	ARM98AC-H•		ARM98MC-H•	

2-5 Input/output power ratings

Motor model	Driver model	Input			Output current per phase
		Voltage	Frequency	Current	
ARM46	ARD-AD2	Single-phase$100-120 \mathrm{~V}$	$50 / 60 \mathrm{~Hz}$	2.4 A	0.49 A
ARM66				3.6 A	0.74 A
ARM69				4.9 A	0.92 A
ARM98				4.6 A	1.13 A
ARM911				5.9 A	1.27 A
ARM46	ARD-CD2	Single-phase $200-240 \mathrm{~V}$		1.5 A	0.49 A
ARM66				2.3 A	0.74 A
ARM69				3.0 A	0.92 A
ARM98				2.9 A	1.13 A
ARM911				3.7 A	1.27 A

2-6 Names and functions of parts

Motor (Example: ARM66MC)

Driver (Example: ARD-CD2)

Name	Description	Page
PWR/ALM LED	- PWR (Green): This LED is lit while the 24 VDC power is input. - ALM (Red): This LED will blink if an alarm generates (a protective function is triggered). It is possible to check the generated alarm by counting the number of times the LED blinks.	p. 143
C-DAT/C-ERR LED	- C-DAT (Green): This LED blinks or is lit when the driver is communicating with the host controller properly via RS-485 communication. - C-ERR (Red): This LED will be lit if a RS-485 communication error occurs with the host controller.	-
Address number setting switch (ID)	This switch is used when controlling the system via RS-485 communication. Sets the address number of RS-485 communication using this switch and SW4-No. 1 of the function setting switch. Factory setting: 0	$\begin{aligned} & \text { p. } 212 \\ & \text { p. } 258 \end{aligned}$
Termination resistor setting switch (TERM.)	This switch is used when controlling the system via RS-485 communication. Sets the termination resistor (120Ω) of RS-485 communication. Factory setting: OFF	$\begin{aligned} & \text { p. } 212 \\ & \text { p. } 259 \end{aligned}$
RS-485 connectors (CN6/CN7)	Connects the RS-485 cable.	p. 42
Output signal connector (CN9)	Connects the output signals.	p. 39
Input signal connector (CN8)	Connects the input signals.	
Sensor signal connector (CN5)	Connects the sensor signals.	
Data edit connector (CN4)	Connects a PC in which the MEXE02 has been installed, or the OPX-2A.	p. 42
Protective Earth Terminals	Ground using a wire of AWG16 to 14 (1.25 to $2.0 \mathrm{~mm}^{2}$).	p. 35
24 VDC power supply input terminals (CN1-24V)	Connects a power supply for control circuit of the driver. +: +24 VDC power supply input -: Power supply GND	p. 37
Regeneration resistor thermal input terminals (CN1-TH1/TH2)	Connects our regeneration resistor RGB100. If no regeneration resistor is connected, short the TH1 and TH2 terminals.	
Electromagnetic brake terminals (CN1-MB1/MB2)	Connects the cable for electromagnetic brake. MB1: Electromagnetic brake - (black) MB2: Electromagnetic brake + (white)	
Motor connector (CN2)	Connects the motor.	p. 34
CHARGE LED (Red)	This LED is lit while the main power is input. After the main power has been turned off, the LED will turn off once the residual voltage in the driver drops to a safe level.	-
Regeneration resistor terminals (CN3-RG1/RG2)	Connects our regeneration resistor RGB100.	p. 38
Main power supply input terminals (CN3-L/N)	Connects the main power supply. L: Live N : Neutral	p. 36
Mounting holes (2 places at the back)	These mounting holes are used to secure the driver with screws.	p. 32
Transmission rate setting switch (SW2)	This switch is used when controlling the system via RS-485 communication. Sets the transmission rate of RS-485 communication. Factory setting: 7	$\begin{aligned} & \text { p. } 211 \\ & \text { p. } 258 \end{aligned}$
Function setting switch (SW4)	This switch is used when controlling the system via RS-485 communication. No.1: Sets the address number using this switch and the address number setting switch (ID). Factory setting: OFF No.2: Sets the protocol of RS-485 communication. Factory setting: OFF	

3 Installation

In addition to the installation locations and methods for the motor and driver, this chapter explains how to install a regenerative resistor.

3-1 Location for installation

The motor and driver are designed and manufactured to be incorporated in equipment. Install them in a wellventilated location that provides easy access for inspection.
The location must also satisfy the following conditions:

- Inside an enclosure that is installed indoors (provide vent holes)
- Operating ambient temperature

Motor: -10 to $+50^{\circ} \mathrm{C}\left(+14\right.$ to $\left.+122^{\circ} \mathrm{F}\right)$ (non-freezing)
Harmonic geared type: 0 to $+40^{\circ} \mathrm{C}\left(+32\right.$ to $\left.+104^{\circ} \mathrm{F}\right)$ (non-freezing)
Driver: 0 to $+55^{\circ} \mathrm{C}\left(+32\right.$ to $\left.+131^{\circ} \mathrm{F}\right)$ (non-freezing)

- Operating ambient humidity 85 \% or less (non-condensing)
- Area free of explosive atmosphere, toxic gas (such as sulfuric gas), or liquid
- Area not exposed to direct sun
- Area free of excessive amount of dust, iron particles or the like
- Area not subject to splashing water (rain, water droplets), oil (oil droplets) or other liquids
- Area free of excessive salt
- Area not subject to continuous vibrations or excessive shocks
- Area free of excessive electromagnetic noise (from welders, power machinery, etc.)
- Area free of radioactive materials, magnetic fields or vacuum
- 1,000 m (3,300 ft.) or lower above sea level

3-2 Installing the motor

The motor can be installed in any direction.
To allow for heat dissipation and prevent vibration, install the motor on a metal surface of sufficient strength. Values of the tightening torque are recommended. Tighten the screws with a suitable torque according to the design conditions of the metal plate to be installed.

- Installation method A

Installation method B

Installation method B (FC geared type)

Type	Frame size [mm (in.)]	Screw size	Tightening torque [$\mathrm{N} \cdot \mathrm{m}(\mathrm{oz}-\mathrm{in})$]	Effective depth of screw thread [mm (in.)]	Installation method
Standard	42 (1.65)	M3	1 (142)	4.5 (0.177)	A
	60 (2.36)	M4	2 (280)	-	B
	85 (3.35)	M6	3 (420)		
TH geared	$\begin{aligned} & 42(1.65) \\ & 60(2.36) \end{aligned}$	M4	2 (280)	8 (0.315)	A
	90 (3.54)	M8	$12(1,700)$	15 (0.591)	
FC geared	42 (1.65)	M4	2 (280)	-	B
	60 (2.36)	M5	3 (420)		
PS geared PN geared Harmonic geared *1	42 (1.65)	M4	2 (280)	8 (0.315)	A
	60 (2.36)	M5	3 (420)	10 (0.394)	
	90 (3.54)	M8	$12(1,700)$	15 (0.591)	
Harmonic geared *2	90 (3.54)	M8	$15(2,100)$	-	B

*1 ARM46 and ARM66 type only.
*2 ARM98 type only.

3-3 Installing a load

This section describes how to install a load to the motor.
Flexible couplings are provided in Oriental Motor products.
Note - When installing a load on the output shaft, pay attention to centering, belt tension, parallelism of pulleys, etc. Also, securely tighten the screws of a coupling or pulley.

- When installing a coupling or pulley on the output shaft, be careful not to damage to the output shaft or the bearing (ball bearings).
- Do not modify or machine the output shaft. Doing so may damage the bearing (ball bearings), resulting in damage to the motor.
- When removing the parallel key from the output shaft, be careful not to apply excessive force with a hammer or other tool. Doing so may damage the output shaft or bearing (ball bearings).

- Using a coupling

Align the axis of rotation for the output shaft and load in a straight line.

- Using a belt
- Align the axis of rotation for the output shaft and load parallel to each other.
- Make the axis of rotation for the output shaft and load perpendicular to a line connecting the centers of the two pulleys.
- Using a gear drive
- Align the output shaft and gear axis parallel to each other.
- Properly engage the centers of the gear tooth surfaces.

- Using a key to fasten (geared motor)

When installing a load on the output shaft with a machined key slot, machine a key slot on the load side and secure the load and output shaft with the included key.

- Harmonic geared type; Installing the load on the flange surface

With a Harmonic geared type (excluding ARM98), a load can be installed directly to the gear using the load mounting screw holes provided on the flange surface.

Motor model	Screw size	Number of screw	Tightening torque [N.m (oz-in)]	Effective depth of screw thread [mm (in.)]
ARM46	M3	6	$1.4(198)$	$5(0.197)$
ARM66	M4	6	$2.5(350)$	$6(0.236)$

memo - When installing a load on the flange surface, the load cannot be mounted using the key slot in the output shaft.

- Design an appropriate installation layout so that the load will not contact the metal plate or screws used for installing the motor.

3-4 Permissible radial load and permissible axial load

Note - If the radial load or axial load exceeds the specified allowable value, repeated load applications may cause the bearing (ball bearings) or output shaft of the motor to undergo a fatigue failure.

- For the double shaft type, do not apply a load torque, radial load, or axial load to the rear shaft on the opposite side of the motor output shaft.
memo
The permissible radial load and permissible axial load of the PS geared type and PN geared type represent the value that the service life of the gear part satisfies 20,000 hours when either of the radial load or axial load is applied to the gear output shaft.

Type	Motor model	Gear ratio	Permissible radial load [N (lb.)]					Permissible axial load [N (lb.)]
			Distance from the tip of output shaft [mm (in.)]					
			0 (0)	5 (0.2)	10 (0.39)	15 (0.59)	20 (0.79)	
Standard	ARM46	-	35 (7.8)	44 (9.9)	58 (13)	85 (19.1)	-	15 (3.3)
	ARM66 ARM69		90 (20)	100 (22)	130 (29)	180 (40)	270 (60)	30 (6.7)
	ARM98 ARM911		260 (58)	290 (65)	340 (76)	390 (87)	480 (108)	60 (13.5)
TH geared	ARM46	All gear ratio	10 (2.2)	14 (3.1)	20 (4.5)	30 (6.7)	-	15 (3.3)
	ARM66		70 (15.7)	80 (18)	100 (22)	120 (27)	150 (33)	40 (9)
	ARM98		220 (49)	250 (56)	300 (67)	350 (78)	400 (90)	100 (22)
FC geared	ARM46	All gear ratio	180 (40)	200 (45)	220 (49)	250 (56)	-	100 (22)
	ARM66		270 (60)	290 (65)	310 (69)	330 (74)	350 (78)	200 (45)
PS geared	ARM46	5	70 (15.7)	80 (18)	95 (21)	120 (27)	-	100 (22)
		7.2	80 (18)	90 (20)	110 (24)	140 (31)	-	
		10	85 (19.1)	100 (22)	120 (27)	150 (33)	-	
		25	120 (27)	140 (31)	170 (38)	210 (47)	-	
		36	130 (29)	160 (36)	190 (42)	240 (54)	-	
		50	150 (33)	170 (38)	210 (47)	260 (58)	-	

Type	Motor model	Gear ratio	Permissible radial load [N (lb.)]					Permissible axial load [N (lb.)]
			Distance from the tip of output shaft [mm (in.)]					
			0 (0)	5 (0.2)	10 (0.39)	15 (0.59)	20 (0.79)	
PS geared	ARM66	5	170 (38)	200 (45)	230 (51)	270 (60)	320 (72)	200 (45)
		7.2	200 (45)	220 (49)	260 (58)	310 (69)	370 (83)	
		10	220 (49)	250 (56)	290 (65)	350 (78)	410 (92)	
		25	300 (67)	340 (76)	400 (90)	470 (105)	560 (126)	
		36	340 (76)	380 (85)	450 (101)	530 (119)	630 (141)	
		50	380 (85)	430 (96)	500 (112)	600 (135)	700 (157)	
	ARM98	5	380 (85)	420 (94)	470 (105)	540 (121)	630 (141)	600 (135)
		7.2	430 (96)	470 (105)	530 (119)	610 (137)	710 (159)	
		10	480 (108)	530 (119)	590 (132)	680 (153)	790 (177)	
		25	650 (146)	720 (162)	810 (182)	920 (200)	1,070 (240)	
		36	730 (164)	810 (182)	910 (200)	1,040 (230)	1,210 (270)	
		50	820 (184)	910 (200)	1,020 (220)	1,160 (260)	1,350 (300)	
PN geared	ARM46	5	80 (18)	95 (21)	120 (27)	160 (36)	-	100 (22)
		7.2	90 (20)	110 (24)	130 (29)	180 (40)	-	
		10	100 (22)	120 (27)	150 (33)	200 (45)	-	
	ARM66	5	240 (54)	260 (58)	280 (63)	300 (67)	330 (74)	200 (45)
		7.2	270 (60)	290 (65)	310 (69)	340 (76)	370 (83)	
		10	300 (67)	320 (72)	350 (78)	380 (85)	410 (92)	
		25	410 (92)	440 (99)	470 (105)	520 (117)	560 (126)	
		36	360 (81)	410 (92)	480 (108)	570 (128)	640 (144)	
		50	360 (81)	410 (92)	480 (108)	570 (128)	700 (157)	
	ARM98	5	370 (83)	390 (87)	410 (92)	430 (96)	460 (103)	600 (135)
		7.2	410 (92)	440 (99)	460 (103)	490 (110)	520 (117)	
		10	460 (103)	490 (110)	520 (117)	550 (123)	580 (130)	
		25	630 (141)	660 (148)	700 (157)	740 (166)	790 (177)	
		36	710 (159)	750 (168)	790 (177)	840 (189)	900 (200)	
		50	790 (177)	840 (189)	890 (200)	940 (210)	1,000 (220)	
Harmonic geared	ARM46	All gear ratio	180 (40)	220 (49)	270 (60)	360 (81)	510 (114)	220 (49)
	ARM66		320 (72)	370 (83)	440 (99)	550 (123)	720 (162)	450 (101)
	ARM98		1,090 (240)	1,150 (250)	1,230 (270)	1,310 (290)	1,410 (310)	1,300 (290)

- Permissible moment load of the Harmonic geared type

If an eccentric load is applied on the flange surface when installing an arm or a table, do not exceed the permissible value shown in the table.

Motor model	Permissible moment load (N.m)
ARM46	5.6
ARM66	11.6

Calculate the moment load using the International System of Units ($\mathrm{N}, \mathrm{N} \cdot \mathrm{m}$).

- Example 1;

When an external force F is applied on the position of distance L from the center of the output flange
L : Distance from the center of the output flange (m)
F: External force (N)
Moment load: $M(N \cdot m)=F \times L$

- Example 2;

When external forces F is applied on the position of distance L from the mounting face of the output flange
L: Distance from the mounting face of the output flange (m)
F: External force (N)
Moment load: $\mathrm{M}(\mathrm{N} \cdot \mathrm{m})=\mathrm{F} \times(\mathrm{L}+$ coefficient " a " $)$

Motor model	Coefficient "a"
ARM46	0.009
ARM66	0.0114

3-5 Installing the driver

The driver is designed so that heat is dissipated via air convection and conduction through the enclosure. Install the driver on a flat metal plate [material: aluminium, $200 \times 200 \times 2 \mathrm{~mm}(7.87 \times 7.87 \times 0.08 \mathrm{in}$.) equivalent] having excellent heat conductivity. When two or more drivers are to be installed side by side, provide 20 mm (0.79 in .) and 25 mm (0.98 in .) clearances in the horizontal and vertical directions, respectively.
When installing the driver inside an enclosure, use two screws (M4, not included) to secure the driver through the mounting holes.
memo - Install the driver in an enclosure whose degree of protection is IP54 minimum when used in a pollution degree 3 environment.

- Do not install any equipment that generates a large amount of heat or noise near the driver.
- Do not install the driver underneath the controller or other equipment vulnerable to heat.
- If the ambient temperature of the driver exceeds $55^{\circ} \mathrm{C}$ ($131^{\circ} \mathrm{F}$), improve the ventilation condition.
- Be sure to install the driver vertically (vertical position).

Dimension [unit: mm (in.)]
Mass: $0.75 \mathrm{~kg}(1.65 \mathrm{lb}$.

Unit: mm (in.)

3-6 Installing the regeneration resistor

Install our regeneration resistor RGB100 in a location where heat dissipation capacity equivalent to a level achieved with a heat sink [made of aluminum, $350 \times 350 \times 3 \mathrm{~mm}(13.78 \times 13.78 \times 0.12 \mathrm{in}$.)] is ensured.
Affix the regeneration resistor on a smooth metal plate offering high heat conductivity, using two screws (M4, not included).

- Plate cutout for mounting
[unit: mm (in.)]

4 Connection

This chapter explains how to connect the motor, I/O signals and power supply to the driver, as well as grounding method. The installation and wiring methods in compliance with the EMC Directive as well as protection against noise are also explained.

- For protection against electric shock, do not turn on the power supply until the wiring is completed.
- A high voltage is applied to the motor connector (CN2) and the main power supply input terminal (CN3). Do not touch these terminals while the power is on. Doing so may result in fire or electric shock.

4-1 Connection example

The figure shows models for the electromagnetic brake motor and single-phase 200 to 240 VAC input.

*1 Keep 30 m (98.4 ft .) or less for the wiring distance between the motor and driver.
*2 These cables are provided as our products. Purchase them separately.
Note - Connect the connectors securely. Insecure connections may cause malfunction or damage to the motor or driver.

- When cycling the main power supply or connecting/disconnecting the connector, turn off the power and wait for the CHARGE LED to turn off before doing so. The residual voltage may cause electric shock.
- Do not wire the power supply cable of the driver in the same cable duct with other power lines or motor cables. Doing so may cause malfunction due to noise.
- The lead wires of the "cable for electromagnetic brake" have polarities, so connect them in the correct polarities. If the lead wires are connected with their polarities reversed, the electromagnetic brake will not operate properly.
memo - When disconnecting the connector, pull out while pressing the latches on the connector with fingers.
- When installing the motor on a moving part, use our flexible cable. Refer to $p .46$ for the model name.
- Cable size and tightening torque

Connector	Terminal symbol	Recommended cable size	Screw size	Tightening torque [$\mathrm{N} \cdot \mathrm{m}$ (oz-in)]
CN1	$24 \mathrm{~V}+, 24 \mathrm{~V}-$	Stranded wire AWG28 to 16 (0.08 to $1.25 \mathrm{~mm}^{2}$)	M2	$\begin{gathered} 0.22 \text { to } 0.25 \\ (31 \text { to } 35) \end{gathered}$
	TH1, TH2	Stranded wire AWG22 (0.3 mm ${ }^{2}$)		
	MB1, MB2	Stranded wire AWG20 (0.5 mm ${ }^{2}$)		
CN3	RG1, RG2	Stranded wire AWG18 (0.75 mm ${ }^{\text {2 }}$)	-	-
	L, N	Stranded wire AWG16 to 14 (1.25 to $2.0 \mathrm{~mm}^{2}$)		
CN5	-	Stranded wire AWG26 to 20 (0.14 to $0.5 \mathrm{~mm}^{2}$)	-	-
CN8	-	Stranded wire AWG26 to 20 (0.14 to $0.5 \mathrm{~mm}^{2}$)	-	-
CN9	-	Stranded wire AWG26 to 20 (0.14 to $0.5 \mathrm{~mm}^{2}$)	-	-

4-2 Grounding the motor and driver

- Grounding the motor

Be sure to ground the Protective Earth Terminal of the motor.

- Grounding wire: AWG18 ($0.75 \mathrm{~mm}^{2}$) or more
- Screw size: M4
- Tightening torque: 1.2 N•m (170 oz-in)

Use a round terminal when grounding, and secure it with a mounting screw with a washer. Ground wires and crimp terminals are not included.

Grounding the driver

Be sure to ground the Protective Earth Terminal of the driver.

- Grounding wire: AWG16 to 14 (1.25 to $2.0 \mathrm{~mm}^{2}$)
- Screw size: M4
- Tightening torque: 1.2 N•m (170 oz-in)

You can ground either of the two Protective Earth Terminals. The terminal that is not grounded is used as a service terminal. Use the service terminal according to your specific need, such as connecting it to the motor in order to ground the motor.
 Do not share the grounding wire with a welder or any other power equipment.
When grounding the Protective Earth Terminal, use a round terminal and secure the grounding point near the driver.

4-3 Connecting the main power supply

Use the CN3 connector (5 pins) to connect the power supply cable (AWG16 to 14: 1.25 to $2.0 \mathrm{~mm}^{2}$) to the main power supply connector (CN3) on the driver.

Single-phase Single-phase 100-120 VAC 200-240 VAC

Single-phase 100-120 VAC Single-phase 200-240 VAC $50 / 60 \mathrm{~Hz}$

Note - Do not wire the power supply cable of the driver in the same cable duct with other power lines or motor cables. Doing so may cause malfunction due to noise.

- When cycling the power or connecting/disconnecting the connector, turn off the power and wait for the CHARGE LED to turn off. The residual voltage may cause electric shock.

Wiring method

- Applicable lead wire: AWG16 to 14 (1.25 to $2.0 \mathrm{~mm}^{2}$)
- Stripping length of wire insulation : 8 to 9 mm (0.31 to 0.35 in .)

1. Insert the connector wiring lever.
2. Insert the lead wire while pushing down the connector wiring lever.

You can also connect the power supply cable using a slotted screwdriver.
Insert the lead wire while pushing the insertion port using a slotted screwdriver with a tip of 3.0 to 3.5 mm (0.12 to 0.14 in.) in width.

Power supply current capacity

The current capacity of the main power supply varies depending on the motor combined. Check the current capacity in reference to the equipped motor model when using the EAS Series, EAC Series, EZS Series, or EZSH Series.

Model	Single-phase $100-120 \mathrm{~V}$ -15 to $+6 \% 50 / 60 \mathrm{~Hz}$	Single-phase $200-240 \mathrm{~V}$ -15 to $+6 \% 50 / 60 \mathrm{~Hz}$
ARM46	2.4 A or more	1.5 A or more
ARM66	3.6 A or more	2.3 A or more
ARM69	4.9 A or more	3.0 A or more
ARM98	4.6 A or more	2.9 A or more
ARM911	5.9 A or more	3.7 A or more
DGM85	2.4 A or more	1.5 A or more
DGM130	3.6 A or more	2.3 A or more
DGM200	5.9 A or more	3.7 A or more

4-4 Connecting the 24 VDC power supply, regeneration resistor and electromagnetic brake

Use the CN1 connector (6 pins) to connect the 24 VDC power supply, regeneration resistor and electromagnetic brake. Connect the lead wire (AWG28 to 16: 0.08 to $1.25 \mathrm{~mm}^{2}$) to the connector while checking the pin numbers in below.

Display	Description		
$24 \mathrm{~V}+$	24 VDC power supply input		
$24 \mathrm{~V}-$			
TH 1	TH 2		Electromagnetic brake -
:---			
(Connect the black lead wire of the electromagnetic brake.)			

Connecting method

1. Strip the insulation cover of the lead wire by 7 mm (0.28 in .)
2. Insert each lead wire into the CN1 connector and tighten the screw with a slotted screwdriver. Connector screw size: M2
Tightening torque: 0.22 to $0.25 \mathrm{~N} \cdot \mathrm{~m}$ (31 to 35 oz-in)
3. Insert the CN1 connector into the CN1, and tighten the screw.

Connector screw size: M2.5
Tightening torque: $0.4 \mathrm{~N} \cdot \mathrm{~m}$ (56 oz-in)

Connecting the $\mathbf{2 4}$ VDC power supply

Connect a 24 VDC power supply of the current capacity shown in the following table.
Check the current capacity in reference to the equipped motor model when using the EAS Series, EAC Series, EZS Series, or EZSH Series.
The 24 VDC power supply is for the control circuit. Be sure to connect it.

Model	Input power supply voltage	Power supply current capacity	
		Without electromagnetic brake	With electromagnetic brake
ARM46	24 VDC ± 5 \%*	0.25 A or more	0.33 A or more
ARM66, ARM69, ARM98			0.5 A or more
ARM911			-
DGM85	$24 \mathrm{VDC} \pm 5$ \%		-
DGM130	24 VDC ± 5 \%*		0.5 A or more
DGM200			

[^1]
Connecting the regeneration resistor

If vertical drive (gravitational operation) such as elevator applications is performed or if sudden start-stop operation of a large inertia load is repeated frequently, connect our regeneration resistor RGB100.

- The two thin lead wires (AWG22: $0.3 \mathrm{~mm}^{2}$) of the regeneration resistor are the thermostat outputs. Connect them to the TH1 and TH2 terminals using the CN1 connector.
- Regenerative current flows through the two thick lead wires (AWG18: $0.75 \mathrm{~mm}^{2}$) of the regeneration resistor. Connect them to the RG1 and RG2 terminals using the CN3 connector.
memo - Before connecting the regeneration resistor, be sure to remove the jumper wire from the CN1 connector.
- If the allowable power consumption of the regeneration resistor exceeds the allowable level, the thermostat will be triggered and an alarm of regeneration resistor overheat is generated. If an alarm of regeneration resistor overheat is generated, turn off the main power supply and check the content of the error.

Regeneration resistor specifications

Model	RGB100
Allowable current consumption	Continuous regenerative power: 50 W * Instantaneous regenerative power: 600 W
Resistance	150Ω
Operating temperature of thermostat	Operation: Opens at $150 \pm 7^{\circ} \mathrm{C}\left(302 \pm 12.6^{\circ} \mathrm{F}\right)$ Reset: Closes at $145 \pm 12^{\circ} \mathrm{C}\left(293 \pm 21.6^{\circ} \mathrm{F}\right)($ normally closed $)$
Electrical rating of thermostat	120 VAC $4 \mathrm{~A}, 30 \mathrm{VDC} 4 \mathrm{~A}$ (minimum current: 5 mA$)$

* Install the regeneration resistor in a location where heat dissipation capacity equivalent to a level achieved with a heat sink [made of aluminum, $350 \times 350 \times 3 \mathrm{~mm}(13.78 \times 13.78 \times 0.12 \mathrm{in}$.)] is ensured.

- Connecting the electromagnetic brake

When the electromagnetic brake is connected, it can automatically be controlled by interlocking with the C-ON input or the FREE input. Refer to p. 34 for connection method.

4-5 Connecting the I/O signals

Wiring method

- Applicable lead wire: AWG26 to 20 (0.14 to $0.5 \mathrm{~mm}^{2}$)
- Stripping length of wire insulation: 8 mm (0.31 in .)

1. Strip the insulation cover of the lead wire.
2. Insert the lead wire while pushing the button of the orange color on the connector with a slotted screwdriver.
3. After having inserted, release the button to secure the lead wire.

- Pin assignment

- Sensor signals (CN5)

Pin No.	Signal name	Description
1	+ LS	Limit sensor input +
2	- LS	Limit sensor input -
3	HOMES	Mechanical home sensor input
4	SLIT	Slit sensor input
5	IN-COM2	Sensor signals common

- Input signals (CN8)

Pin No.	Signal name	Description*
1	IN0	Control input 0 (HOME)
2	IN1	Control input 1 (START)
3	IN2	Control input 2 (M0)
4	IN3	Control input 3 (M1)
5	IN4	Control input 4 (M2)
6	IN5	Control input 5 (FREE)
7	IN6	Control input 6 (STOP)
8	IN7	Control input 7 (ALM-RST)
9	IN-COM1	Input signals common

* (): Initial value
- Output signals (CN9)

Pin No.	Signal name	Description *
1	OUT0	Control output 0 (HOME-P)
2	OUT1	Control output 1 (END)
3	OUT2	Control output 2 (AREA1)
4	OUT3	Control output 3 (READY)
5	OUT4	Control output 4 (WNG)
6	OUT5	Control output 5 (ALM)
7	OUT-COM	Output signals common

* (): Initial value

Connection example with a current sink output circuit (NPN specifications)

memo - Use input signals at 24 VDC .

- Use output signals at 12 to 24 VDC 10 mA or less. If the current exceeds 10 mA , connect an external resistor RO so that the current becomes 10 mA or less.
- The saturated voltage of the output signal is 3 VDC maximum.

Connection example with a current source output circuit (PNP specifications)

memo - Use input signals at 24 VDC .

- Use output signals at 12 to 24 VDC 10 mA or less. If the current exceeds 10 mA , connect an external resistor RO so that the current becomes 10 mA or less.
- The saturated voltage of the output signal is 3 VDC maximum.

4-6 Connecting the data setter

Connect the communication cable for the support software or OPX-2A cable to the data edit connector (CN4) on the driver.

©CAUTION

The data edit connector (CN4) and RS-485 connectors (CN6/CN7) of the driver are not insulated. When grounding the positive terminal of the power supply, do not connect any equipment (PC, etc.) whose negative terminal is grounded. Doing so may cause the driver and these equipment to short, damaging both.

4-7 Connecting the RS-485 cable

Connect this cable if you want to control your product via RS-485 communication. Connect the RS-485 cable to CN6 or CN7 on the driver.
You can use the vacant connectors to connect a different driver. A driver link cable is also available in our products. Refer to p. 48 for the model name. You can also use a commercial LAN cable (straight cable) to link drivers.

- Internal input circuit

CN6/CN7 pin assignment

Pin No.	Signal name	Description
1	N.C.	Not used.
2	GND	GND
3	TR+	RS-485 communication signal (+)
4	N.C.	Not used.
5	N.C.	
6	TR-	RS-485 communication signal (-)
7	N.C.	Not used.
8	N.C.	

4-8 Noise elimination measures

The electrical noise is of two types: One is a noise to invade into the driver from the outside and cause the driver malfunction, and the other is a noise to emit from the driver and cause peripheral equipments malfunction. For the noise that is invaded from the outside, take measures to prevent the driver malfunction. It is needed to take adequate measures because signal lines are very likely to be affected by the noise.
For the noise that is emitted from the driver, take measures to suppress it.

Measures against electrical noise

There are the following three methods mainly to take measures against the electrical noise.

- Noise suppression

- When relays or electromagnetic switches are used together with the system, use noise filters and CR circuits to suppress surges generated by them.
- Use our connection cable or extension cable when extending a wiring distance between the motor and driver. Refer to p. 46 for the model name.
- Cover the driver by a metal plate such as aluminum. This is effective in shielding the electrical noise emitted from the driver.

- Prevention of noise propagation

- Connect a noise filter in the power supply cable of driver.
- Place the power lines, such as the motor and power supply cables, keeping a distance of 200 mm (7.87 in.) or more from the signal lines, and also do not bundle them or wire them in parallel. If the power cables and signal cables have to cross, cross them at a right angle.
- Use shielded twisted pair cables for power lines and signal lines.
- Keep cables as short as possible without coiling and bundling extra lengths.
- Grounding multiple points will increase effect to block electrical noise because impedance on the grounding points is decreased. However, ground them so that a potential difference does not occur among the grounding points. I/O signal cables that include a ground wire are provided in our product line. Refer to p. 48 for the model name.
- To ground a shielded cable, use a metal cable clamp that will maintain contact with the entire circumference of the cable. Ground the cable clamp near the product.

- Suppression of effect by noise propagation

Loop the noise propagated cable around a ferrite core. Doing so will prevent the propagated noise invades into the driver or emits from the driver. The frequency band in which an effect by the ferrite core can be seen is generally 1 MHz or more. Check the frequency characteristics of the ferrite core used. To increase the effect of noise attenuation by the ferrite core, loop the cable a lot.

■ Noise suppression products

- Noise filter

- Connect the following noise filter (or equivalent) to the power line. Doing so will prevent the propagated noise through the power line. Install the noise filter as close to the driver as possible.

Manufacture	Model
SOSHIN ELECTRIC CO., LTD.	HF2010A-UPF
Schaffner EMC	FN2070-10-06

- Use the AWG18 $\left(0.75 \mathrm{~mm}^{2}\right)$ or thicker wire for the input and output cables of the noise filter, and secure firmly using a cable clamp or others so that the cable does not come off the enclosure.
- Place the input cable as far apart as possible from the output cable, and do not wire the cables in parallel. If the input and output cable are placed at a close distance or if they are wired in parallel, the noise inside the enclosure affects the power cable through stray capacitance, and the noise suppressing effect will reduce.
- Connect the ground terminal of the noise filter to the grounding point, using as thick and short a wire as possible.
- When connecting a noise filter inside an enclosure, wire the input cable of the noise filter as short as possible. Wiring in long distance may reduce the noise suppressing effect.

- Surge arrester

A surge arrester is effective for reduction of the surge voltage of the lightning surge generated between the AC power line and earth or between $A C$ power lines. Connect the following surge arrester. R.A.V-781BWZ-4 (OKAYA ELECTRIC INDUSTRIES CO., LTD.)

Note When measuring dielectric strength of the equipment, be sure to remove the surge arrester, or the surge arrester may be damaged.

■ Our noise suppression products

Refer to p .48 for the model name.

- I/O signal cable

This cable is a shielded twisted pair cable for good noise immunity to connect the driver and host controller. The ground wires useful to grounding are provided at both ends of the cable. The EMC testing is conducted using our I/O signal cable.

- Surge suppressor

This product is effective to suppress the surge which occurs in a relay contact part. Connect it when using a relay or electromagnetic switch. CR circuit for surge suppression and CR circuit module are provided.

4-9 Conformity to the EMC Directive

Effective measures must be taken against the EMI that the motor and driver may give to adjacent control-system equipment, as well as the EMS of the motor and driver itself, in order to prevent a serious functional impediment in the machinery. The use of the following installation and wiring methods will enable the motor and driver to be compliant with the EMC Directive.
Oriental Motor conducts EMC testing on its motors and drivers in accordance with "Example of installation and wiring" on p. 45 .
The user is responsible for ensuring the machine's compliance with the EMC Directive, based on the installation and wiring explained below.

This equipment is not intended for use in residential environments nor for use on a low-voltage public network supplied in residential premises, and it may not provide adequate protection to radio reception interference in such environments.

- Connecting noise filter

In large electrically noisy environments, connect a noise filter. Refer to "Noise filter" on p.43.

- Connecting surge arrester

Refer to "Surge arrester" in the above.

- Connecting the 24 VDC power supply

Use a 24 VDC power supply that conforms to the EMC Directive.
Use a shielded twisted pair cable for wiring. Refer to "Prevention of noise propagation" on p .43 for wiring method.

- Connecting the motor cable

Use our connection cable or extension cable when extending the wiring distance between the motor and driver. Refer to "Connection cable set model" on p. 46 for the model name.

- Connecting the signal cable

Refer to "Prevention of noise propagation" on p.43.

- How to ground
- The cable used to ground the motor, driver and noise filter must be as thick and short as possible so that no potential difference is generated.
- Choose a large, thick and uniformly conductive surface for the grounding point.
- Be sure to ground the Protective Earth Terminal of the motor and driver. Refer to p. 35 for grounding method.
- Example of installation and wiring

Note
The driver uses parts that are sensitive to electrostatic charge. Take measures against static electricity since static electricity may cause the driver to malfunction or suffer damage.

5 Cables

memo When installing the motor on a moving part, use a flexible cable.

5-1 Connection cable set

Use when connecting a motor and a driver.
The cable set for electromagnetic brake motors consists of two cables, one for motor and the other for electromagnetic brake.

* Only when the motor is of electromagnetic brake type.
- Connection cable set model

Length $[\mathrm{m}(\mathrm{ft})]$.	For standard type motor	For electromagnetic brake type motor
$0.5(1.6)$	CC005VAF	CC005VAFB
$1(3.3)$	CC010VAF	CC010VAFB
$1.5(4.9)$	CC015VAF	CC015VAFB
$2(6.6)$	CC020VAF	CC020VAFB
$2.5(8.2)$	CC025VAF	CC025VAFB
$3(9.8)$	CC030VAF	CC030VAFB
$4(13.1)$	CC040VAF	CC040VAFB
$5(16.4)$	CC050VAF	CC050VAFB
$7(23)$	CC070VAF	CC070VAFB
$10(32.8)$	CC100VAF	CC100VAFB
$15(49.2)$	CC150VAF	CC150VAFB
$20(65.6)$	CC200VAF	CC200VAFB
$30(98.4)$	CC300VAF	CC300VAFB

- Flexible connection cable set model

Length $[\mathrm{m}(\mathrm{ft})]$.	For standard type motor	For electromagnetic brake type motor
$0.5(1.6)$	CC005VAR	CC005VARB
$1(3.3)$	CC010VAR	CC010VARB
$1.5(4.9)$	CC015VAR	CC015VARB
$2(6.6)$	CC020VAR	CC020VARB
$2.5(8.2)$	CC025VAR	CC025VARB
$3(9.8)$	CC030VAR	CC030VARB
$4(13.1)$	CC040VAR	CC040VARB
$5(16.4)$	CC050VAR	CC050VARB
$7(23)$	CC070VAR	CC070VARB
$10(32.8)$	CC100VAR	CC100VARB
$15(49.2)$	CC150VAR	CC150VARB
$20(65.6)$	CC200VAR	CC200VARB
$30(98.4)$	CC300VAR	CC300VARB

5-2 Extension cable set

Use when extending the distance between a motor and a driver or when the length of the connection cable used is not enough. Extend the distance by connecting the extension cable to the connection cable.
The cable set for electromagnetic brake motors consists of two cables, one for motor and the other for electromagnetic brake.

*1 Use the connection cable used.
*2 Only when the motor is of electromagnetic brake type.
memo When extending the wiring length by connecting an extension cable to the connection cable, keep the total cable length to 30 m (98.4 ft .) or less.

- Extension cable set model

Length $[\mathrm{m}(\mathrm{ft})]$.	For standard type motor	For electromagnetic brake type motor
$0.5(1.6)$	CC005VAFT	CC005VAFBT
$1(3.3)$	CC010VAFT	CC010VAFBT
$1.5(4.9)$	CC015VAFT	CC015VAFBT
$2(6.6)$	CC020VAFT	CC020VAFBT
$2.5(8.2)$	CC025VAFT	CC025VAFBT
$3(9.8)$	CC030VAFT	CC030VAFBT
$4(13.1)$	CC040VAFT	CC040VAFBT
$5(16.4)$	CC050VAFT	CC050VAFBT
$7(23)$	CC070VAFT	CC070VAFBT
$10(32.8)$	CC100VAFT	CC100VAFBT
$15(49.2)$	CC150VAFT	CC150VAFBT
$20(65.6)$	CC200VAFT	CC200VAFBT

Flexible extension cable set model

Length $[m(f \mathrm{ft})]$.	For standard type motor	For electromagnetic brake type motor
$0.5(1.6)$	CC005VART	CC005VARBT
$1(3.3)$	CC010VART	CC010VARBT
$1.5(4.9)$	CC015VART	CC015VARBT
$2(6.6)$	CC020VART	CC020VARBT
$2.5(8.2)$	CC025VART	CC025VARBT
$3(9.8)$	CC030VART	CC030VARBT
$4(13.1)$	CC040VART	CC040VARBT
$5(16.4)$	CC050VART	CC050VARBT
$7(23)$	CC070VART	CC070VARBT
$10(32.8)$	CC100VART	CC100VARBT
$15(49.2)$	CC150VART	CC150VARBT
$20(65.6)$	CC200VART	CC200VARBT

5-3 Communication cable for the support software

Be sure to purchase the communication cable for the support software when connecting a driver and PC in which the support software MEXEO2 has been installed.
This is a set of a PC interface cable and USB cable. The cable is connected to the USB port on the PC.
The MEXEO2 can be downloaded from Oriental Motor Website Download Page.
Model: CC05IF-USB [5 m (16.4 ft.)]

5-4 RS-485 cable

You can link drivers using this cable connected to the RS-485 connectors (CN6, CN7).
Model: CC002-RS4 [0.25 m (1 ft.)]

5-5 I/O signal cable

A shielded cable for driver control I/O signals offering excellent noise resistance. The ground wires useful to grounding are provided at both ends of the cable.
Select the cable suitable for the number of I/O signals connected.

General-purpose type

Cable length $[\mathrm{m}(\mathrm{ft})]$.	Number of lead wire			
	6 pcs.	10 pcs.	12 pcs.	16 pcs.
$0.5(1.6)$	CC06D005B-1	CC10D005B-1	CC12D005B-1	CC16D005B-1
$1(3.3)$	CC06D010B-1	CC10D010B-1	CC12D010B-1	CC16D010B-1
$1.5(4.9)$	CC06D015B-1	CC10D015B-1	CC12D015B-1	CC16D015B-1
$2(6.6)$	CC06D020B-1	CC10D020B-1	CC12D020B-1	CC16D020B-1

6 Accessories

6-1 Setting tools

Data setter

The data setter lets you set operation data and parameters for your AR Series with ease and also functions as a monitor.

Model: OPX-2A

6-2 Wiring support tools

Regeneration resistor

If vertical drive (gravitational operation) such as elevating applications is performed or if sudden start-stop operation of a large inertia is repeated frequently, connect the regeneration resistor. Always connect the regeneration resistor if an overvoltage protection warning or alarm generates.
Model: RGB100
■ CR circuit for surge suppression
This product is effective to suppress the serge which occurs in a relay contact part. Use it to protect the contacts of the relay or switch.

Model: EPCR1201-2

CR circuit module

This product is effective to suppress the surge which occurs in a relay contact part. Use this product to protect the contacts of the relay or switch.
Four pieces of CR circuit for surge suppression are mounted on the compact circuit, and this product can be installed to the DIN rail. This product can make the wiring easily and securely since it also supports terminal block connection.
Model: VCSO2

3
 DC power input type

This part explains contents specific to the AR Series DC power input type.

Table of contents

1 System configuration 52
2 Preparation 53
2-1 Checking the product 53
2-2 How to identify the product model 54
2-3 Information about nameplate 55
2-4 Combinations of motors and drivers 56
2-5 Input/output power ratings 57
2-6 Names and functions of parts 57
3 Installation 60
3-1 Location for installation 60
3-2 Installing the motor 60
3-3 Installing a load 61
3-4 Permissible radial load and permissible axial load 62
3-5 Installing the driver. 65
4 Connection 67
4-1 Connection example 67
4-2 Grounding the motor and the driver 68
4-3 Connecting the power supply and electromagnetic brake. 68
4-4 Connecting the I/O signals 69
4-5 Connecting the data setter 73
4-6 Connecting the RS-485 cable. 73
4-7 Noise elimination measures 74
4-8 Conformity to the EMC Directive 75
5 Cables 77
5-1 Connection cable set 77
5-2 Extension cable set 78
5-3 Communication cable for the support software 79
5-4 RS-485 cable 79
5-5 I/O signal cable 80
6 Accessories 81
6-1 Setting tools 81
6-2 Wiring support tools 81

1 System configuration

*1 This cable is provided as our product. When the length of the motor cable is not enough, purchase it separately.
*2 The PC must be supplied by the user. Use our communication cable for the support software CC05IF-USB when connecting the PC and driver.
*3 These products are provided as our accessories.

2 Preparation

This chapter explains the items you should check, as well as the name and function of each part.

2-1 Checking the product

Verify that the items listed below are included. Report any missing or damaged items to the Oriental Motor sales office from which you purchased the product.

- Motor
- Motor ... 1 unit
- Parallel key .. 1 pc. *1
- Varistor ... 1 pc. *2
- Instructions and Precautions for Safe Use 1 copy
- APPENDIX UL Standards for AR Series \qquad 1 copy *3
*1 Included with geared types. However, the following geared types are excluded.
TH geared: ARM24-T, ARM46-T, and ARM66-T
PS geared: ARM24-PS
PN geared: ARM24-N
Harmonic geared: ARM24-H
*2 Included with the electromagnetic brake motor. It is not used for the built-in controller type driver.
*3 Included with products conform to the UL Standards.
- Driver
- Driver 1 unit
- CN1 connector (5 pins) 1 pc.
- CN5 connector (5 pins) 1 pc.
- CN8 connector (9 pins) 1 pc.
- CN9 connector (7 pins) 1 pc.
- Instructions and Precautions for Safe Use 1 copy

Included connector model

Type	Model (Manufacturer)
CN1 connector	MC1,5/5-STF-3,5 (PHOENIX CONTACT GmbH \& Co. KG)
CN5 connector	FK-MC0,5/5-ST-2,5 (PHOENIX CONTACT GmbH \& Co. KG)
CN8 connector	FK-MC0,5/9-ST-2,5 (PHOENIX CONTACT GmbH \& Co. KG)
CN9 connector	FK-MC0,5/7-ST-2,5 (PHOENIX CONTACT GmbH \& Co. KG)

2-2 How to identify the product model

Check the model name of the motor and driver against the number shown on the nameplate. Refer to p .55 for how to identify the nameplate.

Motor

- Standard type

$$
\frac{\text { ARM }}{1} \frac{\mathbf{2}}{2} \frac{\mathbf{4}}{3} \frac{\mathbf{S}}{4} \frac{\mathbf{A}}{5} \frac{\mathbf{O}}{6} \frac{\mathbf{K}}{7}
$$

- Geared type
$\frac{\text { ARM }}{1} \frac{4}{2} \frac{6}{3} \frac{\mathbf{S}}{4} \frac{\mathbf{A}}{5} \frac{\mathbf{K}}{7}-\frac{\mathbf{T}}{8} \frac{7.2}{9} \frac{\mathbf{U}}{10}$

1	Series name	ARM: AR Series motor
2	Motor frame size	1:20 mm (0.79 in.) 2: 28 mm (1.10 in .) [30 mm (1.18 in.) for Harmonic geared type] 4: 42 mm (1.65 in .) 6: 60 mm (2.36 in.) 9: 85 mm (3.35 in.) [90 mm (3.54 in.) for geared type]
3	Motor length	
4	Motor identification	S: Without connector cover for cable Blank: With connector cover for cable
5	Motor type	A: Single shaft B: Double shaft M: With electromagnetic brake
6	Additional function	$\mathbf{0}$: Round shaft without shaft flat Blank: Round shaft with shaft flat on one side
7	Motor power supply input	K: DC power input type
8	Type of gear	T: TH geared PS: PS geared N: PN geared H: Harmonic geared Blank: Standard
9	Gear ratio	Indicates a number representing the gear ratio. Refer to $p .55$ for the gear type and gear ratio.
10	Cable outlet direction* (TH geared type only)	U: Upward direction L: Leftward direction R: Rightward direction Blank: Downward direction

* The cable outlet direction represents the one as viewed from the output shaft side in a state of placing it upward.

Type of gear ratio

Type of gear	Gear ratio
TH geared	ARM24: 7.2, 10, 20, 30 ARM46, ARM66, ARM98: 3.6, 7.2, 10, 20, 30
PS geared	ARM24: 5, 7.2 (*), 10 ARM46, ARM66, ARM98: 5, 7.2 (*), 10, 25, 36, 50
PN geared	ARM24, ARM46: 5, 7.2, 10 ARM66, ARM98: 5, 7.2, 10, 25, 36, 50
Harmonic geared	50,100

* The model name is " 7 " for the gear ratio 7.2 of the PS geared type.

Driver

$\frac{\text { ARD }}{1}-\frac{\mathrm{K}}{2} \frac{\mathrm{D}}{3} \frac{\mathbf{2}}{4}$

1	Series name	ARD: AR Series driver
2	Power supply input	K: 24 VDC/48 VDC
3	Type	D: Built-in controller type
4	Reference number	

2-3 Information about nameplate

The figure shows an example.

memo The position describing the information may vary depending on the product.

2-4 Combinations of motors and drivers

- Standard type

Single shaft	
Motor model	Driver model
ARM14SAK	ARD-KD2
ARM14SAOK	
ARM15SAK	
ARM15SAOK	
ARM24SAK	
ARM24SAOK	
ARM26SAK	
ARM26SAOK	
ARM46SAK	
ARM46SAOK	
ARM46AK	
ARM66SAK	
ARM66SA0K	
ARM66AK	
ARM69SAK	
ARM69SA0K	
ARM69AK	
ARM98SAK	
ARM98SAOK	
ARM98AK	

Double shaft	
Motor model	Driver model
ARM14SBK	ARD-KD2
ARM14SBOK	
ARM15SBK	
ARM15SB0K	
ARM24SBK	
ARM24SBOK	
ARM26SBK	
ARM26SBOK	
ARM46SBK	
ARM46SBOK	
ARM46BK	
ARM66SBK	
ARM66SB0K	
ARM66BK	
ARM69SBK	
ARM69SB0K	
ARM69BK	
ARM98SBK	
ARM98SB0K	
ARM98BK	

With electromagnetic brake	
Motor model	Driver model
ARM24SMK	ARD-KD2
ARM24SMOK	
ARM26SMK	
ARM26SMOK	
ARM46SMK	
ARM46SMOK	
ARM46MK	
ARM66SMK	
ARM66SM0K	
ARM66MK	
ARM69SMK	
ARM69SM0K	
ARM69MK	
ARM98SMK	
ARM98SMOK	
ARM98MK	

Geared type

- The box (\bullet) in the model name indicates a number representing the gear ratio.
- The box $(\boldsymbol{)}$) in the model name indicates \mathbf{U} (upward direction), \mathbf{L} (left direction), or \mathbf{R} (right direction) representing the cable outlet direction.
The box () is blank when the cable outlet direction is downward.

Type of gear	Single shaft		With electromagnetic brake	
	Motor model	Driver model	Motor model	Driver model
TH geared	ARM24SAK-T•	ARD-KD2	ARM24SMK-T•	ARD-KD2
	ARM46SAK-T•		ARM46SMK-T•	
	ARM46AK-T•		ARM46MK-T*	
	ARM66SAK-T•		ARM66SMK-T•	
	ARM66AK-T•		ARM66MK-T•	
	ARM98SAK-T•		ARM98SMK-T•	
	ARM98AK-T•		ARM98MK-T•	
PS geared	ARM24SAK-PS•	ARD-KD2	-	-
	ARM46SAK-PS*		ARM46SMK-PS	ARD-KD2
	ARM46AK-PS•		ARM46MK-PS	
	ARM66SAK-PS•		ARM66SMK-PS•	
	ARM66AK-PS•		ARM66MK-PS•	
	ARM98SAK-PS•		ARM98SMK-PS•	
	ARM98AK-PS•		ARM98MK-PS•	

Type of gear	Single shaft		With electromagnetic brake	
	Motor model	Driver model	Motor model	Driver model
PN geared	ARM24SAK-N0	ARD-KD2	-	-
	ARM46SAK-N		ARM46SMK-N•	ARD-KD2
	ARM46AK-N		ARM46MK-N	
	ARM66SAK-N0		ARM66SMK-N	
	ARM66AK-N		ARM66MK-N	
	ARM98SAK-N0		ARM98SMK-N•	
	ARM98AK-N0		ARM98MK-N0	
Harmonic geared	ARM24SAK-He	ARD-KD2	ARM24SMK-H•	ARD-KD2
	ARM46SAK-H○		ARM46SMK-H○	
	ARM46AK-H•		ARM46MK-H•	
	ARM66SAK-H○		ARM66SMK-H	
	ARM66AK-H•		ARM66MK-H•	
	ARM98SAK-H		ARM98SMK-H	
	ARM98AK-H•		ARM98MK-H•	

2-5 Input/output power ratings

Motor model	Driver model	Input		Output current per phase
		Voltage	Current	
ARM14	ARD-KD2	24 VDC	0.4 A	0.43 A
ARM15			0.5 A	0.52 A
ARM24 ARM26			1.3 A	0.88 A
ARM46		$\begin{aligned} & 24 \mathrm{VDC} \\ & 48 \mathrm{VDC} \end{aligned}$	1.8 A	1.48 A
ARM66			3.8 A	2.55 A
ARM69			3.7 A	
ARM98			3.1 A	

2-6 Names and functions of parts

Motor (Example: ARM66SMK)

- Driver

Name	Description	Page
Function setting switch (SW3)	This switch is used when controlling the system via RS-485 communication. No.1: Sets the address number using this switch and the address number setting switch (SW1). Factory setting: OFF No.2: Sets the protocol of RS-485 communication. Factory setting: OFF No.3: Not used. No.4: Sets the termination resistor (120Ω) of RS-485 communication. Factory setting: OFF	$\begin{aligned} & \text { p. } 213 \\ & \text { p. } 214 \\ & \text { p. } 260 \end{aligned}$
Electromagnetic brake terminals (CN1-MB1/MB2)	Connects the cable for electromagnetic brake. MB1: Electromagnetic brake - (black) MB2: Electromagnetic brake + (white)	p. 68
Power supply input terminals (CN1)	Connects the driver power supply. +: +24 VDC/48 VDC power supply input -: Power supply GND	
Frame Ground Terminal (CN1)	Ground using a wire of AWG24 to 16 (0.2 to $1.25 \mathrm{~mm}^{2}$).	p. 68
Motor connector (CN2)	Connects the motor.	p. 67
Data edit connector (CN3)	Connects a PC in which the MEXEO2 has been installed, or the OPX-2A.	p. 73
Sensor signal connector (CN5)	Connects the sensor signals.	p. 69
RS-485 connectors (CN6/CN7)	Connects the RS-485 cable.	p. 73
Input signal connector (CN8)	Connects the input signals.	p. 69
Output signal connector (CN9)	Connects the output signals.	

3 Installation

This chapter explains the installation location and installation methods of the motor and driver, along with load installation.

3-1 Location for installation

The motor and driver are designed and manufactured to be incorporated in equipment. Install them in a wellventilated location that provides easy access for inspection.
The location must also satisfy the following conditions:

- Inside an enclosure that is installed indoors (provide vent holes)
- Operating ambient temperature

Motor: -10 to $+50^{\circ} \mathrm{C}\left(+14\right.$ to $\left.+122^{\circ} \mathrm{F}\right)$ (non-freezing)
Harmonic geared type: 0 to $+40^{\circ} \mathrm{C}\left(+32\right.$ to $\left.+104^{\circ} \mathrm{F}\right)$ (non-freezing)
Driver: 0 to $+50^{\circ} \mathrm{C}\left(+32\right.$ to $\left.+122^{\circ} \mathrm{F}\right)$ (non-freezing)

- Operating ambient humidity 85 \% or less (non-condensing)
- Area free of explosive atmosphere, toxic gas (such as sulfuric gas), or liquid
- Area not exposed to direct sun
- Area free of excessive amount of dust, iron particles or the like
- Area not subject to splashing water (rain, water droplets), oil (oil droplets) or other liquids
- Area free of excessive salt
- Area not subject to continuous vibrations or excessive shocks
- Area free of excessive electromagnetic noise (from welders, power machinery, etc.)
- Area free of radioactive materials, magnetic fields or vacuum
- 1,000 m (3,300 ft.) or lower above sea level

3-2 Installing the motor

The motor can be installed in any direction.
To allow for heat dissipation and prevent vibration, install the motor on a metal surface of sufficient strength.
Values of the tightening torque are recommended. Tighten the screws with a suitable torque according to the design conditions of the metal plate to be installed.

- Installation method A

- Installation method B

Type	Frame size [mm (in.)]	Screw size	Tightening torque [$\mathrm{N} \cdot \mathrm{m}$ (oz-in)]	Effective depth of screw thread [mm (in.)]	Installation method
Standard	20 (0.79)	M2	0.25 (35)	2.5 (0.098)	A
	28 (1.10)	M2.5	0.5 (71)	2.5 (0.098)	
	42 (1.65)	M3	1 (142)	4.5 (0.177)	
	60 (2.36)	M4	2 (280)	-	B
	85 (3.35)	M6	3 (420)		
TH geared	28 (1.10)	M2.5	0.5 (71)	4 (0.157)	A
	$\begin{aligned} & 42(1.65) \\ & 60(2.36) \end{aligned}$	M4	2 (280)	8 (0.315)	
	90 (3.54)	M8	$12(1,700)$	15 (0.591)	

Type	Frame size [mm (in.)]	Screw size	Tightening torque [N.m (oz-in)]	Effective depth of screw thread [mm (in.)]	Installation method
PS geared PN geared Harmonic geared *1	$28(1.10)$ $30(1.18)$	M3	$1(142)$	$6(0.236)$	
	$42(1.65)$	M4	$2(280)$	$8(0.315)$	A
	$60(2.36)$	M5	$3(420)$	$10(0.394)$	
	$90(3.54)$	M8	$12(1,700)$	$15(0.591)$	
Harmonic geared *2	$90(3.54)$	M8	$15(2,100)$	-	B

*1 ARM24, ARM46 and ARM66 type only.
*2 ARM98 type only.

3-3 Installing a load

This section describes how to install a load to the motor.
Flexible couplings are provided in Oriental Motor products.
Note - When installing a load on the output shaft, pay attention to centering, belt tension, parallelism of pulleys, etc. Also, securely tighten the screws of a coupling or pulley.

- When installing a coupling or pulley on the output shaft, be careful not to damage to the output shaft or the bearing (ball bearings).
- Do not modify or machine the output shaft. Doing so may damage the bearing (ball bearings), resulting in damage to the motor.
- When removing the parallel key from the output shaft, be careful not to apply excessive force with a hammer or other tool. Doing so may damage the output shaft or bearing (ball bearings).

- Using a coupling

Align the axis of rotation for the output shaft and load in a straight line.

- Using a belt
- Align the axis of rotation for the output shaft and load parallel to each other.
- Make the axis of rotation for the output shaft and load perpendicular to a line connecting the centers of the two pulleys.
- Using a gear drive
- Align the output shaft and gear axis parallel to each other.
- Properly engage the centers of the gear tooth surfaces.

Using a coupling

Using a belt

Using a gear drive

- Using a key to fasten (geared motor)

When installing a load on the output shaft with a machined key slot, machine a key slot on the load side and secure the load and output shaft with the included key.

- Harmonic geared type; Installing the load on the flange surface

With a Harmonic geared type (excluding ARM98), a load can be installed directly to the gear using the load mounting screw holes provided on the flange surface.

Motor model	Screw size	Number of screw	Tightening torque [N.m (oz-in)]	Effective depth of screw thread [mm (in.)]
ARM24	M3	4	$1.4(198)$	$4(0.157)$
ARM46	M3	6	$1.4(198)$	$5(0.197)$
ARM66	M4	6	$2.5(350)$	$6(0.236)$

memo - When installing a load on the flange surface, the load cannot be mounted using the key slot in the output shaft.

- Design an appropriate installation layout so that the load will not contact the metal plate or screws used for installing the motor.

3-4 Permissible radial load and permissible axial load

Note

- If the radial load or axial load exceeds the specified allowable value, repeated load applications may cause the bearing (ball bearings) or output shaft of the motor to undergo a fatigue failure.
- For the double shaft type, do not apply a load torque, radial load, or axial load to the rear shaft on the opposite side of the motor output shaft.

memo

The permissible radial load and permissible axial load of the PS geared type and PN geared type represent the value that the service life of the gear part satisfies 20,000 hours when either of the radial load or axial load is applied to the gear output shaft.

Type	Motor model	Gear ratio	Permissible radial load [N (lb.)]					Permissible axial load [N (lb.)]
			Distance from the tip of output shaft [mm (in.)]					
			0 (0)	5 (0.2)	10 (0.39)	15 (0.59)	20 (0.79)	
Standard	ARM14 ARM15	-	12 (2.7)	15 (3.3)	-	-	-	3 (0.67)
	ARM24 ARM26		25 (5.6)	34 (7.6)	52 (11.7)	-	-	5 (1.12)
	ARM46		35 (7.8)	44 (9.9)	58 (13)	85 (19.1)	-	15 (3.3)
	ARM66 ARM69		90 (20)	100 (22)	130 (29)	180 (40)	270 (60)	30 (6.7)
	ARM98		260 (58)	290 (65)	340 (76)	390 (87)	480 (108)	60 (13.5)
TH geared	ARM24	All gear ratio	15 (3.3)	17 (3.8)	20 (4.5)	23 (5.1)	-	10 (2.2)
	ARM46		10 (2.2)	14 (3.1)	20 (4.5)	30 (6.7)	-	15 (3.3)
	ARM66		70 (15.7)	80 (18)	100 (22)	120 (27)	150 (33)	40 (9)
	ARM98		220 (49)	250 (56)	300 (67)	350 (78)	400 (90)	100 (22)
PS geared	ARM24	All gear ratio	45 (10.1)	60 (13.5)	80 (18)	100 (22)	-	40 (9)
	ARM46	5	70 (15.7)	80 (18)	95 (21)	120 (27)	-	100 (22)
		7.2	80 (18)	90 (20)	110 (24)	140 (31)	-	
		10	85 (19.1)	100 (22)	120 (27)	150 (33)	-	
		25	120 (27)	140 (31)	170 (38)	210 (47)	-	
		36	130 (29)	160 (36)	190 (42)	240 (54)	-	
		50	150 (33)	170 (38)	210 (47)	260 (58)	-	

Type	Motor model	Gear ratio	Permissible radial load [N (lb.)]					Permissible axial load [N (lb.)]
			Distance from the tip of output shaft [mm (in.)]					
			0 (0)	5 (0.2)	10 (0.39)	15 (0.59)	20 (0.79)	
PS geared	ARM66	5	170 (38)	200 (45)	230 (51)	270 (60)	320 (72)	200 (45)
		7.2	200 (45)	220 (49)	260 (58)	310 (69)	370 (83)	
		10	220 (49)	250 (56)	290 (65)	350 (78)	410 (92)	
		25	300 (67)	340 (76)	400 (90)	470 (105)	560 (126)	
		36	340 (76)	380 (85)	450 (101)	530 (119)	630 (141)	
		50	380 (85)	430 (96)	500 (112)	600 (135)	700 (157)	
	ARM98	5	380 (85)	420 (94)	470 (105)	540 (121)	630 (141)	600 (135)
		7.2	430 (96)	470 (105)	530 (119)	610 (137)	710 (159)	
		10	480 (108)	530 (119)	590 (132)	680 (153)	790 (177)	
		25	650 (146)	720 (162)	810 (182)	920 (200)	1,070 (240)	
		36	730 (164)	810 (182)	910 (200)	1,040 (230)	1,210 (270)	
		50	820 (184)	910 (200)	1,020 (220)	1,160 (260)	1,350 (300)	
PN geared	ARM24	All gear ratio	45 (10.1)	60 (13.5)	80 (18)	100 (22)	-	40 (9)
	ARM46	5	80 (18)	95 (21)	120 (27)	160 (36)	-	100 (22)
		7.2	90 (20)	110 (24)	130 (29)	180 (40)	-	
		10	100 (22)	120 (27)	150 (33)	200 (45)	-	
	ARM66	5	240 (54)	260 (58)	280 (63)	300 (67)	330 (74)	200 (45)
		7.2	270 (60)	290 (65)	310 (69)	340 (76)	370 (83)	
		10	300 (67)	320 (72)	350 (78)	380 (85)	410 (92)	
		25	410 (92)	440 (99)	470 (105)	520 (117)	560 (126)	
		36	360 (81)	410 (92)	480 (108)	570 (128)	640 (144)	
		50	360 (81)	410 (92)	480 (108)	570 (128)	700 (157)	
	ARM98	5	370 (83)	390 (87)	410 (92)	430 (96)	460 (103)	600 (135)
		7.2	410 (92)	440 (99)	460 (103)	490 (110)	520 (117)	
		10	460 (103)	490 (110)	520 (117)	550 (123)	580 (130)	
		25	630 (141)	660 (148)	700 (157)	740 (166)	790 (177)	
		36	710 (159)	750 (168)	790 (177)	840 (189)	900 (200)	
		50	790 (177)	840 (189)	890 (200)	940 (210)	1,000 (220)	
Harmonic geared	ARM24	All gear ratio	100 (22)	135 (30)	175 (39)	250 (56)	-	140 (31)
	ARM46		180 (40)	220 (49)	270 (60)	360 (81)	510 (114)	220 (49)
	ARM66		320 (72)	370 (83)	440 (99)	550 (123)	720 (162)	450 (101)
	ARM98		1,090 (240)	1,150 (250)	1,230 (270)	1,310 (290)	1,410 (310)	1,300 (290)

Permissible moment load of the Harmonic geared type

If an eccentric load is applied on the flange surface when installing an arm or a table, do not exceed the permissible value shown in the table.

Motor model	Permissible moment load (N-m)
ARM24	2.9
ARM46	5.6
ARM66	11.6

Calculate the moment load using the International System of Units ($\mathrm{N}, \mathrm{N} \cdot \mathrm{m}$).

- Example 1; When an external force F is applied on the position of distance L from the center of the output flange
L : Distance from the center of the output flange (m)
F: External force (N)
Moment load: $M(N \cdot m)=F \times L$

- Example 2; When external forces F is applied on the position of distance L from the mounting face of the output flange
L: Distance from the mounting face of the output flange (m)
F: External force (N)
Moment load: $M(N \cdot m)=F \times(L+$ coefficient "a")

Motor model	coefficient "a"
ARM24	0.0073
ARM46	0.009
ARM66	0.0114

3-5 Installing the driver

Mount the driver to a 35 mm (1.38 in .) width DIN rail.
When installing two or more drivers in parallel, it is possible to install them closely in the horizontal direction. Provide a minimum clearance of 50 mm (1.97 in .) in the vertical direction.
When installing three or more drivers closely, the heat generation of the inside drivers become high. Install the less frequently used drivers toward the inside. Use the "Overheat warning" parameter to check the inside temperature of the driver.
memo - Do not install any equipment that generates a large amount of heat or noise near the driver.

- Do not install the driver underneath the controller or other equipment vulnerable to heat.
- If the ambient temperature of the driver exceeds $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$, improve the ventilation condition.
- Be sure to install the driver vertically (vertical position).

Unit: mm (in.)

1. Pull down the DIN lever of the driver and lock it. Hang the hook at the rear to the DIN rail.
2. Hold the driver to the DIN rail, and push up the DIN lever to secure.
3. Secure both sides of the driver using end plates.

Removing from DIN rail

Pull the DIN lever down until it locks using a slotted screwdriver, and lift the bottom of the driver to remove it from the rail.
Use force of about 10 to 20 N (2.2 to 4.5 lb .) to pull the DIN lever to lock it. Excessive force may damage the DIN lever.

Dimension [unit: mm (in.)]
Mass: 0.15 kg (5.3 oz .)

4 Connection

This chapter explains how to connect the motor, I/O signals and power supply to the driver, as well as grounding method. The installation and wiring methods in compliance with the EMC Directive as well as protection against noise are also explained.

4-1 Connection example

The figure shows the electromagnetic brake type motor.

*1 Keep 30 m (98.4 ft .) or less for the wiring distance between the motor and driver.
*2 These cables are provided as our products. Purchase them separately. Use the cable for motor when the length of the motor cable is not enough.
*3 If connector covers are attached on cables, cover the connected connectors using them.

Note

- Connect the connectors securely. Insecure connector connection may cause malfunction or damage to the motor or driver.
- When connecting/disconnecting the connector, turn off the power and wait for the POWER LED to turn off before doing so.
- When connecting, check the silk screen of the driver and pay attention to the polarity of the power supply. Reverse-polarity connection may cause damage to the driver. The power-supply circuit and the RS-485 communication circuit are not insulated. Therefore, when controlling multiple drivers via RS-485 communication, the reverse polarity of the power supply will cause a short circuit and may result in damage to the drivers.
- Do not wire the power supply cable of the driver in the same cable duct with other power lines or motor cables. Doing so may cause malfunction due to noise.
- The lead wires of the "cable for electromagnetic brake" have polarities, so connect them in the correct polarities. If the lead wires are connected with their polarities reversed, the electromagnetic brake will not operate properly.
memo - When disconnecting the connector, pull out while pressing the latches on the connector with fingers.
- When installing the motor on a moving part, use our flexible cable. Refer to $p .77$ for the model name.
- Cable size and tightening torque

Connector	Terminal symbol	Recommended cable size	Screw size	Tightening torque $[\mathrm{N} \cdot \mathrm{m} \mathrm{(oz-in)]}$
CN1	$24 / 48 \mathrm{~V}+$ $24 / 48 \mathrm{~V}-$	Stranded wire AWG24 to $16\left(0.2\right.$ to $\left.1.25 \mathrm{~mm}^{2}\right)$	M 2	0.22 to 0.25 $(31$ to 35$)$
	MB1, MB2	Stranded wire AWG20 $\left(0.5 \mathrm{~mm}^{2}\right)$		
CN5	-	Stranded wire AWG26 to $20\left(0.14\right.$ to $\left.0.5 \mathrm{~mm}^{2}\right)$	-	-
CN8	-	Stranded wire AWG26 to $20\left(0.14\right.$ to $\left.0.5 \mathrm{~mm}^{2}\right)$	-	-
CN9	-	Stranded wire AWG26 to $20\left(0.14\right.$ to $\left.0.5 \mathrm{~mm}^{2}\right)$	-	-

4-2 Grounding the motor and the driver

- Grounding the motor

Ground the functional earth terminal (M4) if necessary.

■ Grounding the driver

Ground the Frame Ground Terminal (CN1) as necessary.
Use a grounding wire of AWG24 to 16 (0.2 to $1.25 \mathrm{~mm}^{2}$), and do not share the Frame Ground Terminal with a welder or any other power equipment.

4-3 Connecting the power supply and electromagnetic brake

Use the CN1 connector (5 pins) to connect the power supply and electromagnetic brake

Connecting method

1. Strip the insulation cover of the lead wire (AWG24 to 16: 0.2 to $1.25 \mathrm{~mm}^{2}$) by 7 mm (0.28 in .)
2. Insert each lead wire into the CN1 connector and tighten the screw with a slotted screwdriver. Connector screw size: M2
Tightening torque: 0.22 to $0.25 \mathrm{~N} \cdot \mathrm{~m}$ (31 to $35 \mathrm{oz}-\mathrm{in}$)
3. Insert the CN1 connector into the CN1, and tighten the screw.

Connector screw size: M2.5
Tightening torque: $0.4 \mathrm{~N} \cdot \mathrm{~m}$ ($56 \mathrm{oz}-\mathrm{in}$)

Pin assignment

Pin No.	Signal name	Description
1	MB1	Electromagnetic brake - (Black)
2	MB2	Electromagnetic brake + (White)
3	+	24 VDC/48 VDC power supply input
4	-	Power supply ground
5	FG	Frame ground

Power supply current capacity

The current capacity of the power supply varies depending on the product to be combined.
Check the current capacity in reference to the equipped motor model when using the EAS Series, EAC Series, or EZS Series.

Model	Input power supply voltage	Power supply current capacity	
		Without electromagnetic brake	With electromagnetic brake
ARM14	$24 \mathrm{VDC} \pm 5$ \% *	0.4 A or more	-
ARM15		0.5 A or more	-
ARM24, ARM26		1.25 A or more	1.3 A or more
ARM46	$\begin{gathered} 24 \mathrm{VDC} \pm 5 \% \text { * } \\ 48 \mathrm{VDC} \pm 5 \% \end{gathered}$	1.72 A or more	1.8 A or more
ARM66		3.55 A or more	3.8 A or more
ARM69		3.45 A or more	3.7 A or more
ARM98		2.85 A or more	3.1 A or more
DGM60	$24 \mathrm{VDC} \pm 5$ \%	1.25 A or more	-

* Use a power supply of $24 \mathrm{VDC} \pm 4 \%$ when extending the wiring distance between an electromagnetic brake motor and a driver to 20 m (65.6 ft .) to 30 m (98.4 ft .).

4-4 Connecting the I/O signals

- Wiring method

- Applicable lead wire: AWG26 to 20 (0.14 to $0.5 \mathrm{~mm}^{2}$)
- Stripping length of wire insulation: 8 mm (0.31 in .)

1. Strip the insulation cover of the lead wire.
2. Insert the lead wire while pushing the button of the orange color on the connector with a slotted screwdriver.
3. After having inserted, release the button to secure the lead wire.

Pin assignment

- Sensor signals (CN5)

Pin No.	Signal name	Description
1	+ LS	Limit sensor input +
2	- LS	Limit sensor input -
3	HOMES	Mechanical home sensor input
4	SLIT	Slit sensor input
5	IN-COM2	Sensor signals common

- Input signals (CN8)

Pin No.	Signal name	Description *
1	IN0	Control input 0 (HOME)
2	IN1	Control input 1 (START)
3	IN2	Control input 2 (M0)
4	IN3	Control input 3 (M1)
5	IN4	Control input 4 (M2)
6	IN5	Control input 5 (FREE)
7	IN6	Control input 6 (STOP)
8	IN7	Control input 7 (ALM-RST)
9	IN-COM1	Input signals common

* (): Initial value
- Output signals (CN9)

Pin No.	Signal name	Description *
1	OUTO	Control output 0 (HOME-P)
2	OUT1	Control output 1 (END)
3	OUT2	Control output 2 (AREA1)
4	OUT3	Control output 3 (READY)
5	OUT4	Control output 4 (WNG)
6	OUT5	Control output 5 (ALM)
7	OUT-COM	Output signals common

* (): Initial value

Connection example with a current sink output circuit (NPN specifications)

memo - Use input signals at 24 VDC.

- Use output signals at 12 to 24 VDC 10 mA or less. If the current exceeds 10 mA , connect an external resistor RO so that the current becomes 10 mA or less.
- The saturated voltage of the output signal is 3 VDC maximum.

Connection example with a current source output circuit (PNP specifications)

memo - Use input signals at 24 VDC .

- Use output signals at 12 to 24 VDC 10 mA or less. If the current exceeds 10 mA , connect an external resistor RO so that the current becomes 10 mA or less.
- The saturated voltage of the output signal is 3 VDC maximum.

4-5 Connecting the data setter

Connect the communication cable for the support software or OPX-2A cable to the data edit connector (CN3) on the driver.

ACAUTION

The power supply connector (CN1), data edit connector (CN3), and RS-485 connectors (CN6/CN7) of the driver are not insulated. When grounding the positive terminal of the power supply, do not connect any equipment (PC, etc.) whose negative terminal is grounded. Doing so may cause the driver and these equipment to short, damaging both.

4-6 Connecting the RS-485 cable

Connect this cable if you want to control your product via RS-485 communication. Connect the RS-485 cable to CN6 or CN7 on the driver.
You can use the vacant connectors to connect a different driver. A driver link cable is also available in our products. Refer to p. 79 for the model name. You can also use a commercial LAN cable (straight cable) to link drivers.

- Internal input circuit

* The GND line is used in common with CN1 (not insulated).

CN6/CN7 pin assignment

Pin No.	Signal name	Description
1	N.C.	Not used.
2	GND	GND
3	TR +	RS-485 communication signal (+)
4	N.C.	Not used.
5	N.C.	
6	TR-	RS-485 communication signal (-)
7	N.C.	Not used.
8	N.C.	

4-7 Noise elimination measures

The electrical noise is of two types: One is a noise to invade into the driver from the outside and cause the driver malfunction, and the other is a noise to emit from the driver and cause peripheral equipments malfunction. For the noise that is invaded from the outside, take measures to prevent the driver malfunction. It is needed to take adequate measures because signal lines are very likely to be affected by the noise.
For the noise that is emitted from the driver, take measures to suppress it.

Measures against electrical noise

There are the following three methods mainly to take measures against the electrical noise.

- Noise suppression

- When relays or electromagnetic switches are used together with the system, use noise filters and CR circuits to suppress surges generated by them.
- Use our connection cable or extension cable when extending a wiring distance between the motor and driver. Refer to p. 77 for the model name.
- Cover the driver by a metal plate such as aluminum. This is effective in shielding the electrical noise emitted from the driver.

- Prevention of noise propagation

- Connect a noise filter in the power supply cable of driver.
- Place the power lines, such as the motor and power supply cables, keeping a distance of 200 mm (7.87 in.) or more from the signal lines, and also do not bundle them or wire them in parallel. If the power cables and signal cables have to cross, cross them at a right angle.
- Use shielded twisted pair cables for power lines and signal lines.
- Keep cables as short as possible without coiling and bundling extra lengths.
- Grounding multiple points will increase effect to block electrical noise because impedance on the grounding points is decreased. However, ground them so that a potential difference does not occur among the grounding points. I/O signal cables that include a ground wire are provided in our product line. Refer to p. 80 for the model name.
- To ground a shielded cable, use a metal cable clamp that will maintain contact with the entire circumference of the cable. Ground the cable clamp near the product.

- Suppression of effect by noise propagation

Loop the noise propagated cable around a ferrite core. Doing so will prevent the propagated noise invades into the driver or emits from the driver. The frequency band in which an effect by the ferrite core can be seen is generally 1 MHz or more. Check the frequency characteristics of the ferrite core used. To increase the effect of noise attenuation by the ferrite core, loop the cable a lot.

- Noise suppression products

- Noise filter

- Connect the following noise filter (or equivalent) to the DC power line. When using a power supply transformer, be sure to connect a noise filter to the AC input side of the power supply transformer. Doing so will prevent the propagated noise through the power line. Install the noise filter as close to the driver as possible.

Manufacture	Model
SOSHIN ELECTRIC CO., LTD.	HF2010A-UPF
Schaffner EMC	FN2070-10-06

- Use the AWG18 ($0.75 \mathrm{~mm}^{2}$) or thicker wire for the input and output cables of the noise filter, and secure firmly using a cable clamp or others so that the cable does not come off the enclosure.
- Place the input cable as far apart as possible from the output cable, and do not wire the cables in parallel. If the input and output cable are placed at a close distance or if they are wired in parallel, the noise inside the enclosure affects the power cable through stray capacitance, and the noise suppressing effect will reduce.
- Connect the ground terminal of the noise filter to the grounding point, using as thick and short a wire as possible.
- When connecting a noise filter inside an enclosure, wire the input cable of the noise filter as short as possible. Wiring in long distance may reduce the noise suppressing effect.

Our noise suppression products

Refer to p .80 and p .81 for the model name.

- I/O signal cable

This cable is a shielded twisted pair cable for good noise immunity to connect the driver and host controller. The ground wires useful to grounding are provided at both ends of the cable. The EMC testing is conducted using the Oriental Motor I/O signal cable.

- Surge suppressor

This product is effective to suppress the surge which occurs in a relay contact part. Connect it when using a relay or electromagnetic switch. CR circuit for surge suppression and CR circuit module are provided.

4-8 Conformity to the EMC Directive

Effective measures must be taken against the EMI that the motor and driver may give to adjacent control-system equipment, as well as the EMS of the motor and driver itself, in order to prevent a serious functional impediment in the machinery. The use of the following installation and wiring methods will enable the motor and driver to be compliant with the EMC Directive.
Oriental Motor conducts EMC testing on its motors and drivers in accordance with "Example of installation and wiring" on p.76.
The user is responsible for ensuring the machine's compliance with the EMC Directive, based on the installation and wiring explained below.

This equipment is not intended for use in residential environments nor for use on a low-voltage public network supplied in residential premises, and it may not provide adequate protection to radio reception interference in such environments.

- Connecting noise filter

In large electrically noisy environments, connect a noise filter. Refer to "Noise filter" in the above.

- Connecting the power supply

Use a DC power supply that conforms to the EMC Directive.
Use a shielded twisted pair cable for wiring. Refer to "Prevention of noise propagation" on p .74 for wiring method.

- Connecting the motor cable

Use our connection cable or extension cable when extending the wiring distance between the motor and driver. Refer to p .77 for the model name.

- Connecting the signal cable

Refer to "Prevention of noise propagation" on p.74.

- How to ground
- The cable used to ground the motor, driver and noise filter must be as thick and short as possible so that no potential difference is generated.
- Choose a large, thick and uniformly conductive surface for the grounding point.
- Refer to p. 68 for grounding method.
- Example of installation and wiring

Note The driver uses parts that are sensitive to electrostatic charge. Take measures against static electricity since static electricity may cause the driver to malfunction or suffer damage.

5 Cables

memo When installing the motor on a moving part, use a flexible cable.

5-1 Connection cable set

Use when connecting a motor and a driver.
The cable set for electromagnetic brake motors consists of two cables, one for motor and the other for electromagnetic brake.

*1 Only when the motor is of electromagnetic brake type.
*2 A connector cover may be attached depending on the specification.

- Connection cable set model

Length [m (ft.)]	For standard type motor		For electromagnetic brake type motor	
	Without connector cover	With connector cover	Without connector cover	With connector cover
$1(3.3)$	CC005VA2F2	-	CC005VA2FB2	-
$1.5(4.9)$	CC010VA2F2	CC010VAF2	CC010VA2FB2	CC010VAFB2
$2(6.6)$	CC020VA2F2	-	CC015VA2FB2	-
$2.5(8.2)$	CC025VA2F2	-	CC020VA2FB2	CC020VAFB2
$3(9.8)$	CC030VA2F2	CC030VAF2	CC030VA2FB2	CC030VAFB2
$4(13.1)$	CC040VA2F2	-	CC040VA2FB2	-
$5(16.4)$	CC050VA2F2	CC050VAF2	CC050VA2FB2	CC050VAFB2
$7(23)$	CC070VA2F2	CC070VAF2	CC070VA2FB2	CC070VAFB2
$10(32.8)$	CC100VA2F2	CC100VAF2	CC100VA2FB2	CC100VAFB2
$15(49.2)$	CC150VA2F2	CC150VAF2	CC150VA2FB2	CC150VAFB2
$20(65.6)$	CC200VA2F2	CC200VAF2	CC200VA2FB2	CC200VAFB2
$30(98.4)$	CC300VA2F2	CC300VAF2	CC300VA2FB2	CC300VAFB2

- Flexible connection cable set model

Length $[\mathrm{m}(\mathrm{ft})]$.	For standard type motor		For electromagnetic brake type motor	
	Without connector cover	With connector cover	Without connector cover	With connector cover
$1(3.3)$	CC010VA2R2	CC010VAR2	CC010VA2RB2	CC010VARB2
$1.5(4.9)$	CC015VA2R2	-	CC015VA2RB2	-
$2(6.6)$	CC020VA2R2	CC020VAR2	CC020VA2RB2	CC020VARB2
$2.5(8.2)$	CC025VA2R2	-	CC025VA2RB2	-
$3(9.8)$	CC030VA2R2	CC030VAR2	CC030VA2RB2	CC030VARB2
$4(13.1)$	CC040VA2R2	-	CC040VA2RB2	-
$5(16.4)$	CC050VA2R2	CC050VAR2	CC050VA2RB2	CC050VARB2
$7(23)$	CC070VA2R2	CC070VAR2	CC070VA2RB2	CC070VARB2
$10(32.8)$	CC100VA2R2	CC100VAR2	CC100VA2RB2	CC100VARB2
$15(49.2)$	CC150VA2R2	CC150VAR2	CC150VA2RB2	CC150VARB2
$20(65.6)$	CC200VA2R2	CC200VAR2	CC200VA2RB2	CC200VARB2
$30(98.4)$	CC300VA2R2	CC300VAR2	CC300VA2RB2	CC300VARB2

5-2 Extension cable set

Use when extending the distance between a motor and a driver or when the length of the connection cable used is not enough. Extend the distance by connecting the extension cable to the connection cable.
The cable set for electromagnetic brake motors consists of two cables, one for motor and the other for electromagnetic brake.

*1 Use the connection cable used.
*2 Only when the motor is of electromagnetic brake type.
*3 A connector cover may be attached depending on the specification.
memo When extending the wiring length by connecting an extension cable to the connection cable, keep the total cable length to 30 m (98.4 ft .) or less.

- Extension cable set model

Length $[\mathrm{m}(\mathrm{ft})]$.	For standard type motor		For electromagnetic brake type motor	
	Without connector cover	With connector cover	Without connector cover	With connector cover
$1(3.3)$	CC010VA2F2	CC010VAFT2	CC010VA2FBT2	CC010VAFBT2
$1.5(4.9)$	CC015VA2F2	-	CC015VA2FBT2	-
$2(6.6)$	CC020VA2F2	CC020VAFT2	CC020VA2FBT2	CC020VAFBT2
$2.5(8.2)$	CC025VA2F2	-	CC025VA2FBT2	-
$3(9.8)$	CC030VA2F2	CC030VAFT2	CC030VA2FBT2	CC030VAFBT2
$4(13.1)$	CC040VA2F2	-	CC040VA2FBT2	-
$5(16.4)$	CC050VA2F2	CC050VAFT2	CC050VA2FBT2	CC050VAFBT2
$7(23)$	CC070VA2F2	CC070VAFT2	CC070VA2FBT2	CC070VAFBT2
$10(32.8)$	CC100VA2F2	CC100VAFT2	CC100VA2FBT2	CC100VAFBT2
$15(49.2)$	CC150VA2F2	CC150VAFT2	CC150VA2FBT2	CC150VAFBT2
$20(65.6)$	CC200VA2F2	CC200VAFT2	CC200VA2FBT2	CC200VAFBT2

- Flexible extension cable set model

Length [m (ft.)]	For standard type motor		For electromagnetic brake type motor	
	Without connector cover	With connector cover	Without connector cover	With connector cover
$0.5(1.6)$	CC005VA2R2	-	CC005VA2RBT2	-
$1(3.3)$	CC010VA2R2	CC010VART2	CC010VA2RBT2	CC010VARBT2
$1.5(4.9)$	CC015VA2R2	-	CC015VA2RBT2	-
$2(6.6)$	CC020VA2R2	CC020VART2	CC020VA2RBT2	CC020VARBT2
$2.5(8.2)$	CC025VA2R2	-	CC025VA2RBT2	-
$3(9.8)$	CC030VA2R2	CC030VART2	CC030VA2RBT2	CC030VARBT2
$4(13.1)$	CC040VA2R2	-	CC040VA2RBT2	-
$5(16.4)$	CC050VA2R2	CC050VART2	CC050VA2RBT2	CC050VARBT2
$7(23)$	CC070VA2R2	CC070VART2	CC070VA2RBT2	CC070VARBT2
$10(32.8)$	CC100VA2R2	CC100VART2	CC100VA2RBT2	CC100VARBT2
$15(49.2)$	CC150VA2R2	CC150VART2	CC150VA2RBT2	CC150VARBT2
$20(65.6)$	CC200VA2R2	CC200VART2	CC200VA2RBT2	CC200VARBT2

5-3 Communication cable for the support software

Be sure to purchase the communication cable for the support software when connecting a driver and PC in which the support software MEXE02 has been installed.
This is a set of a PC interface cable and USB cable. The cable is connected to the USB port on the PC.
The MEXE02 can be downloaded from Oriental Motor Website Download Page.
Model: CC05IF-USB [5 m (16.4 ft.)]

5-4 RS-485 cable

You can link drivers using this cable connected to the RS-485 connectors (CN6, CN7).
Model: CC001-RS4 [0.1 m (0.3 ft.)]
CC002-RS4 [0.25 m (0.8 ft.)]

5-5 I/O signal cable

A shielded cable for driver control I/O signals offering excellent noise resistance. The ground wires useful to grounding are provided at both ends of the cable.
Select the cable suitable for the number of I/O signals connected.

General-purpose type

Cable length $[\mathrm{m}(\mathrm{ft})]$.	Number of lead wire			
	CC06D005B-1	CC10D005B-1	CC12D005B-1	CC16D005B-1
$1(3.3)$	CC06D010B-1	CC10D010B-1	CC12D010B-1	CC16D010B-1
$1.5(4.9)$	CC06D015B-1	CC10D015B-1	CC12D015B-1	CC16D015B-1
$2(6.6)$	CC06D020B-1	CC10D020B-1	CC12D020B-1	CC16D020B-1

6 Accessories

6-1 Setting tools

Data setter

The data setter lets you set operation data and parameters for your AR Series with ease and also functions as a monitor.

Model: OPX-2A

6-2 Wiring support tools

■ CR circuit for surge suppression
This product is effective to suppress the serge which occurs in a relay contact part. Use it to protect the contacts of the relay or switch.

Model: EPCR1201-2
■ CR circuit module
This product is effective to suppress the surge which occurs in a relay contact part. Use this product to protect the contacts of the relay or switch.
Four pieces of $C R$ circuit for surge suppression are mounted on the compact circuit, and this product can be installed to the DIN rail. This product can make the wiring easily and securely since it also supports terminal block connection.
Model: VCSO2

4
 AC power input type/ DC power input type Common

This part explains common contents to the AR Series AC power input type and DC power input type.

Table of contents

1 Explanation of I/O signals 84
1-1 Assignment of direct I/O84
1-2 Assignment of remote I/O 88
1-3 Input signals 92
1-4 Output signals 98
1-5 Sensor inputs 103
1-6 General signals (R0 to R15) 104
2 Method of control via I/O 105
2-1 Guidance 105
2-2 Operation data 109
2-3 Parameter 110
3 Operation using the OPX-2A 121
3-1 Overview of the OPX-2A 121
3-2 Names and functions of parts 122
3-3 How to read the display 122
3-4 OPX-2A error display 123
3-5 Screen transitions 124
3-6 Monitor mode. 128
3-7 Data mode. 129
3-8 Parameter mode 132
3-9 Test mode 139
3-10 Copy mode 141
4 Inspection and maintenance 142
4-1 Inspection 142
4-2 Warranty 142
4-3 Disposal 142
5 Alarms and warnings 143
5-1 Alarms 143
5-2 Warning 150
5-3 Communication errors. 151
6 Troubleshooting and remedial actions 152

1 Explanation of I/O signals

In this manual, I/O signals are described as follows.

- Direct I/O: I/O signals accessed via input signal connector (CN8) and output signal connector (CN9)
- Remote I/O: I/O signals accessed via RS-485 communication

Set the following parameters using the MEXE02, OPX-2A or RS-485 communication.

1-1 Assignment of direct I/O

Assignment to the input terminals

The input signals shown below can be assigned to the input terminals INO to IN7 of CN8 by setting parameters. For details on input signals, refer to p.92.

Direct I/O signal name	Initial value
INO	$3:$ HOME
IN1	$4:$ START
IN2	$48:$ MO
IN3	$49:$ M1

Direct I/O signal name	Initial value
IN4	$50:$ M2
IN5	16: FREE
IN6	18: STOP
IN7	24: ALM-RST

Assignment No.	Signal name	Function
0	No function	Set when the input terminal is not used.
1	FWD	Execute continuous operation in the positive direction.
2	RVS	Execute continuous operation in the negative direction.
3	HOME	Execute return-to-home operation.
4	START	Execute positioning operation.
5	SSTART	Execute sequential positioning operation.
6	+JOG	Execute JOG operation in the positive direction.
7	-JOG	Execute JOG operation in the negative direction.
8	MSO	Execute direct positioning operation.
9	MS1	
10	MS2	
11	MS3	
12	MS4	
13	MS5	
16	FREE	Stop the motor excitation and release the electromagnetic brake.
17	C-ON	Switch the motor excitation between excitation and non-excitation.
18	STOP	Stop of the motor operation.
24	ALM-RST	Reset the current alarm.
25	P-PRESET	Execute position preset.
26	P-CLR	This cannot be used.
27	HMI	Release of the function limitation of the MEXE02 or OPX-2A.
32	R0	General signals. Use these signals when controlling the system via RS-485 communication.
33	R1	
34	R2	
35	R3	
36	R4	
37	R5	
38	R6	

Assignment No.	Signal name	Function
39	R7	General signals. Use these signals when controlling the system via RS-485 communication.
40	R8	
41	R9	
42	R10	
43	R11	
44	R12	
45	R13	
46	R14	
47	R15	
48	M0	Select the operation data No. using these six bits.
49	M1	
50	M2	
51	M3	
52	M4	
53	M5	

Related parameter

memo - Do not assign the same input signal to multiple input terminals. When the same input signal is assigned to multiple input terminals, the function will be executed if any of the terminals becomes active.

- The ALM-RST input will be executed when turning from ON to OFF.

The P-PRESET input will be executed when turning from OFF to ON.

- When the C-ON input and HMI input are not assigned to the input terminals, these inputs will always be set to ON. When assigning to both direct I/O and remote I/O, the function will be executed when both of them are set to ON.

■ Changing the logic level setting of input signals

You can change the logic level setting for input terminals INO to IN7 using the parameter.

Related parameter

MEXE02 tree view	Parameter name	Description	Initial value
I/O function [Input]	INO input logic level setting	Changes the logic level setting for input terminals INO to IN7. [Setting range] 0: Make (N.O.) 1: Brake (N.C.)	0
	IN1 input logic level setting		
	IN2 input logic level setting		
	IN3 input logic level setting		
	IN4 input logic level setting		
	IN5 input logic level setting		
	IN6 input logic level setting		
	IN7 input logic level setting		

Assignment to the output terminals

The output signals shown below can be assigned to the output terminals OUT0 to OUT5 of CN9 by setting parameters. For details on output signals, refer to p. 98 .

Direct I/O signal name	Initial value
OUT0	70: HOME-P
OUT1	69: END
OUT2	73: AREA1

Direct I/O signal name	Initial value
OUT3	$67:$ READY
OUT4	$66:$ WNG
OUT5	$65:$ ALM

Assignment No.	Signal name	Function
0	No function	Set when the output terminal is not used.
1	FWD_R	Output in response to the FWD input.
2	RVS_R	Output in response to the RVS input.
3	HOME_R	Output in response to the HOME input.
4	START_R	Output in response to the START input.
5	SSTART_R	Output in response to the SSTART input.
6	+JOG_R	Output in response to the +JOG input.
7	-JOG_R	Output in response to the -JOG input.
8	MSO_R	Output in response to the MSO to MS5 input.
9	MS1_R	
10	MS2_R	
11	MS3_R	
12	MS4_R	
13	MS5_R	
16	FREE_R	Output in response to the FREE input.
17	C-ON_R	Output in response to the C-ON input.
18	STOP_R	Output in response to the STOP input.
32	R0	Output the status of the general signal R0 to R9.
33	R1	
34	R2	
35	R3	
36	R4	
37	R5	
38	R6	
39	R7	
40	R8	
41	R9	

Assignment No.	Signal name	Function
42	R10	Output the status of the general signal R10 to R15.
43	R11	
44	R12	
45	R13	
46	R14	
47	R15	
48	M0_R	Output in response to the M0 to M5 input.
49	M1_R	
50	M2_R	
51	M3_R	
52	M4_R	
53	M5_R	
60	+LS_R	Output in response to the +LS input.
61	-LS_R	Output in response to the -LS input.
62	HOMES_R	Output in response to the HOMES input.
63	SLIT_R	Output in response to the SLIT input.
65	ALM	Output the alarm status of the driver (normally closed).
66	WNG	Output the warning status of the driver.
67	READY	Output when the driver is ready.
68	MOVE	Output when the motor operates.
69	END	Output when the positioning operation is completed.
70	HOME-P	Output when the motor is in home.
71	TLC	Output when the load is outside of the motor torque range.
72	TIM	Output once every 7.2° rotation of the motor output shaft.
73	AREA1	Output when the motor is within the area 1.
74	AREA2	Output when the motor is within the area 2.
75	AREA3	Output when the motor is within the area 3.
80	S-BSY	Output when the driver is in internal processing state.
82	MPS *	Output the ON-OFF state of the main power supply.

* AC power input only

Related parameter

MEXE02 tree view	Parameter name	Description	Initial value
I/O function [Output]	OUTO output function selection	Assigns the following output signals to OUT0 to OUT5 of the output terminals. [Setting range] Refer to the following table.	70: HOME-P
	OUT1 output function selection		69: END
	OUT2 output function selection		73: AREA1
	OUT3 output function selection		67: READY
	OUT4 output function selection		66: WNG
	OUT5 output function selection		65: ALM

0: No function	10: MS2_R	35: R3	45: R13	61:-LS_R	72: TIM
1: FWD_R	11: MS3_R	36: R4	46: R14	62: HOMES_R	73: AREA1
2: RVS_R	12: MS4_R	37: R5	47: R15	63: SLIT_R	74: AREA2
3: HOME_R	13: MS5_R	38: R6	48: M0_R	65: ALM	75: AREA3
4: START_R	16: FREE_R	39: R7	49: M1_R	66: WNG	80: S-BSY
5: SSTART_R	17: C-ON_R	40: R8	50: M2_R	67: READY	82: MPS *
6: +JOG_R	18: STOP_R	41: R9	51: M3_R	68: MOVE	
7: -JOG_R	32: R0	42: R10	52: M4_R	69: END	
8: MSO_R	33: R1	43: R11	53: M5_R	70: HOME-P	
9: MS1_R	34: R2	44: R12	60:+LS_R	71:TLC	

* AC power input only

1-2 Assignment of remote I/O

Assign the I/O function via RS-485 communication.

Assignment of input signals

The input signals shown below can be assigned to the NET-INO to NET-IN15 of the remote I/O by setting parameters. Refer to each command description for the assignment of the NET-INO to NET-IN15.

Assignment No.	Signal name	Function	Setting range
0	No function	Set when the input terminal is not used.	-
1	FWD	Execute continuous operation in the positive direction.	0 : Deceleration stop 1: Operation
2	RVS	Execute continuous operation in the negative direction.	
3	HOME	Execute return-to-home operation.	0: No operation 1: Start operation
4	START	Execute positioning operation.	
5	SSTART	Execute sequential positioning operation.	
6	+JOG	Execute JOG operation in the positive direction.	
7	-JOG	Execute JOG operation in the negative direction.	
8	MSO	Execute direct positioning operation of the operation data No. set by the I/O parameter.	
9	MS1		
10	MS2		
11	MS3		
12	MS4		
13	MS5		
16	FREE	Stop the motor excitation and release the electromagnetic brake.	0 : No operation 1: Electromagnetic brake release+motor nonexcitation
17	C-ON	Switch the motor excitation between excitation and non-excitation.	0: Motor non-excitation 1: Motor excitation
18	STOP	Stop of the motor operation.	0: No operation 1: Stop operation
24	ALM-RST	Reset the current alarm.	0 : No operation 1: Reset alarm
25	P-PRESET	Execute position preset.	0 : No operation 1: Execute preset
26	P-CLR	This cannot be used.	-
27	HMI	Release of the function limitation of the MEXEO2 or OPX-2A	0 : Function limitation 1: Function limitation release
32	R0	General signals. Use these signals when controlling the system via RS-485 communication.	$\begin{aligned} & \text { 0: OFF } \\ & \text { 1: ON } \end{aligned}$
33	R1		
34	R2		
35	R3		
36	R4		
37	R5		
38	R6		
39	R7		
40	R8		
41	R9		
42	R10		

Assignment No.	Signal name	Function	Setting range
43	R11	General signals. Use these signals when controlling the system via RS-485 communication.	$\begin{aligned} & \text { 0: OFF } \\ & \text { 1: ON } \end{aligned}$
44	R12		
45	R13		
46	R14		
47	R15		
48	M0	Select the operation data No. using these six bits. Refer to p .93 for details on the combination.	$\begin{aligned} & \text { 0: OFF } \\ & \text { 1: ON } \\ & \text { (Operation data No. } 0 \text { to } 63 \\ & \text { can be selected.) } \end{aligned}$
49	M1		
50	M2		
51	M3		
52	M4		
53	M5		

Related parameter

* It cannot be used.
memo - Do not assign the same input signal to multiple input terminals. When the same input signal is assigned to multiple input terminals, the function will be executed if any of the terminals becomes active.
- The ALM-RST input will be executed when turning from ON to OFF.

The P-PRESET input will be executed when turning from OFF to ON.

- When the C-ON input and HMI input are not assigned to the input terminals, these inputs will always be set to ON. When assigning to both direct I/O and remote I/O, the function will be executed when both of them are set to ON .

Assignment to the output terminals

The output signals shown below can be assigned to the NET-OUT0 to NET-OUT15 of the remote I/O by setting parameters. Refer to each command description for the assignment of the NET-OUT0 to NET-OUT15.

Assignment No.	Signal name	Function	Data read
66	WNG	Output the warning status of the driver.	0 : Warning not present 1:Warning present
67	READY	Output when the driver is ready.	0: Not ready 1: Ready
68	MOVE	Output when the motor operates.	0 : Motor stopped 1: Motor operating
69	END	Output when the positioning operation is completed.	0 : Motor operating 1: Motor operating completion
70	HOME-P	Output when the motor is in home.	0: Not home 1: Home
71	TLC	Output when the load is outside of the motor torque range.	0 : Inside torque range 1: Outside torque range
72	TIM	Output once every 7.2° rotation of the motor output shaft.	$\begin{aligned} & \text { 0: OFF } \\ & \text { 1: ON } \end{aligned}$
73	AREA1	Output when the motor is within the area 1.	0 : Outside area 1: Inside area
74	AREA2	Output when the motor is within the area 2.	
75	AREA3	Output when the motor is within the area 3.	
80	S-BSY	Output when the driver is in internal processing state.	$\begin{aligned} & \text { 0: OFF } \\ & \text { 1:ON } \end{aligned}$
82	MPS *	Output the ON-OFF state of the main power supply.	

* AC power input only

Related parameter

1-3 Input signals

All input signals of the driver are photocoupler inputs.

- Direct I/O I/O for normally open: "ON: Current-carrying", "OFF: Not current-carrying" I/O for normally closed: "ON: Not current-carrying", "OFF: Current-carrying"
- Remote I/O "ON: 1", "OFF: 0"
- Internal input circuit

- M0 to M5 inputs

Select a desired operation data number for positioning operation or continuous operation based on the combination of ON/OFF states of the M0 to M5 inputs.

Operation data No.	M5	M4	M3	M2	M1	M0
0	OFF	OFF	OFF	OFF	OFF	OFF
1	OFF	OFF	OFF	OFF	OFF	ON
2	OFF	OFF	OFF	OFF	ON	OFF
3	OFF	OFF	OFF	OFF	ON	ON
4	OFF	OFF	OFF	ON	OFF	OFF
5	OFF	OFF	OFF	ON	OFF	ON
6	OFF	OFF	OFF	ON	ON	OFF
7	OFF	OFF	OFF	ON	ON	ON
8	OFF	OFF	ON	OFF	OFF	OFF
9	OFF	OFF	ON	OFF	OFF	ON
10	OFF	OFF	ON	OFF	ON	OFF
11	OFF	OFF	ON	OFF	ON	ON
12	OFF	OFF	ON	ON	OFF	OFF
13	OFF	OFF	ON	ON	OFF	ON
14	OFF	OFF	ON	ON	ON	OFF
15	OFF	OFF	ON	ON	ON	ON
16	OFF	ON	OFF	OFF	OFF	OFF
17	OFF	ON	OFF	OFF	OFF	ON
18	OFF	ON	OFF	OFF	ON	OFF
19	OFF	ON	OFF	OFF	ON	ON
20	OFF	ON	OFF	ON	OFF	OFF
21	OFF	ON	OFF	ON	OFF	ON
22	OFF	ON	OFF	ON	ON	OFF
23	OFF	ON	OFF	ON	ON	ON
24	OFF	ON	ON	OFF	OFF	OFF
25	OFF	ON	ON	OFF	OFF	ON
26	OFF	ON	ON	OFF	ON	OFF
27	OFF	ON	ON	OFF	ON	ON
28	OFF	ON	ON	ON	OFF	OFF
29	OFF	ON	ON	ON	OFF	ON
30	OFF	ON	ON	ON	ON	OFF
31	OFF	ON	ON	ON	ON	ON

Operation data No.	M5	M4	M3	M2	M1	M0
32	ON	OFF	OFF	OFF	OFF	OFF
33	ON	OFF	OFF	OFF	OFF	ON
34	ON	OFF	OFF	OFF	ON	OFF
35	ON	OFF	OFF	OFF	ON	ON
36	ON	OFF	OFF	ON	OFF	OFF
37	ON	OFF	OFF	ON	OFF	ON
38	ON	OFF	OFF	ON	ON	OFF
39	ON	OFF	OFF	ON	ON	ON
40	ON	OFF	ON	OFF	OFF	OFF
41	ON	OFF	ON	OFF	OFF	ON
42	ON	OFF	ON	OFF	ON	OFF
43	ON	OFF	ON	OFF	ON	ON
44	ON	OFF	ON	ON	OFF	OFF
45	ON	OFF	ON	ON	OFF	ON
46	ON	OFF	ON	ON	ON	OFF
47	ON	OFF	ON	ON	ON	ON
48	ON	ON	OFF	OFF	OFF	OFF
49	ON	ON	OFF	OFF	OFF	ON
50	ON	ON	OFF	OFF	ON	OFF
51	ON	ON	OFF	OFF	ON	ON
52	ON	ON	OFF	ON	OFF	OFF
53	ON	ON	OFF	ON	OFF	ON
54	ON	ON	OFF	ON	ON	OFF
55	ON	ON	OFF	ON	ON	ON
56	ON	ON	ON	OFF	OFF	OFF
57	ON	ON	ON	OFF	OFF	ON
58	ON	ON	ON	OFF	ON	OFF
59	ON	ON	ON	OFF	ON	ON
60	ON	ON	ON	ON	OFF	OFF
61	ON	ON	ON	ON	OFF	ON
62	ON	ON	ON	ON	ON	OFF
63	ON	ON	ON	ON	ON	ON

START input

This signal starts the positioning operation.
Select the operation data No. and turn the START input to ON to start positioning operation.
Related parameter

MEXEO2 tree view	Parameter name	Description	Initial value
Alarm	Return-to-home incomplete alarm	When the positioning operation is started while the position origin has not been set, selects whether the alarm generates or not. [Setting range] 0: Disable $1:$ Enable	0

- SSTART input

This signal starts the sequential positioning operation. (p.169)
Positioning operation based on the next operation data No. will be performed every time the SSTART input turns ON. This function is useful when multiple positioning operations must be performed sequentially, because there is no need to repeatedly select each operation data No.

Related parameter

MEXEO2 tree view	Parameter name	Description	Initial value
Alarm			
	Return-to-home incomplete alarm	When the positioning operation is started while the position origin has not been set, selects whether the alarm generates or not. [Setting range] 0: Disable $1:$ Enable	0

MS0 to MS5 input

This signal starts the direct positioning operation. (p.168)
When any of the MSO to MS5 inputs is turned ON, the positioning operation corresponding to the input data No. will be performed. Since the positioning operation is enabled by turning any of the MSO to MS5 inputs ON, you can save the steps of selecting the operation data No.

Related parameter

MEXE02 tree view	Parameter name	Description	Initial value
Alarm	Return-to-home incomplete alarm	When the positioning operation is started while the position origin has not been set, selects whether the alarm generates or not. [Setting range] 0 : Disable 1: Enable	0
I/O	MS0 operation No. selection	Sets operation data No. corresponding to MS0 to MS5 input. [Setting range] Operation data No. 0 to 63	0
	MS1 operation No. selection		1
	MS2 operation No. selection		2
	MS3 operation No. selection		3
	MS4 operation No. selection		4
	MS5 operation No. selection		5

HOME input

This signal starts the return-to-home operation. (p.179)
Turn the HOME input ON to start return-to-home operation. When the return-to-home operation is completed and the motor stops, the HOME-P output turns ON.

Related parameter

MEXE02 tree view	Parameter name	Description	Initial value
Home operation	Home-seeking mode	Sets the mode for return-to-home operation. [Setting range $]$ $0: 2$-sensor mode $1: 3$-sensor mode 2: Push mode	
	Operating speed of home-seeking	Sets the operating speed for return-to-home operation. [Setting range $]$ 1 to $1,000,000 \mathrm{~Hz}$	1

MEXE02 tree view	Parameter name	Description	Initial value
Home operation	Acceleration/ deceleration of homeseeking	Sets the acceleration/deceleration rate (acceleration/deceleration time) for return-tohome operation. [Setting range] 1 to $1,000,000$ ($1=0.001 \mathrm{~ms} / \mathrm{kHz}$ or $1=0.001 \mathrm{~s}$)	1,000
	Starting speed of homeseeking	Sets the starting speed for return-to-home operation. [Setting range] 1 to $1,000,000 \mathrm{~Hz}$	500
	Position offset of home-seeking	Sets the amount of offset from mechanical home. [Setting range] $-8,388,608$ to $8,388,607$ step	0
	Starting direction of home-seeking	Sets the starting direction for home detection. [Setting range] 0 : Negative direction 1: Positive direction	1
	SLIT detection with home-seeking	Sets whether or not to concurrently use the SLIT input for return-to-home operation. [Setting range] 0 : Disable 1: Enable	0
	TIM signal detection with home-seeking	Sets whether or not to concurrently use the TIM signal for return-to-home operation. [Setting range] 0 : Disable 1: Enable	0
	Operating current of home-seeking with push-motion	Sets the operating current, based on the rated current being 100%, for push-motion return-tohome operation. [Setting range] 0 to 1,000 ($1=0.1 \%$)	1,000

FWD input, RVS input

These signals start the continuous operation. (p.188)
Operation is performed based on the FWD or RVS input and the operating speed corresponding to the selected operation data No.
Turn the FWD signal to ON, to perform continuous operation in the positive direction.
Turn the RVS signal to ON , to perform continuous operation in the negative direction.
If the signal of the same direction is turned ON again during deceleration, the motor will accelerate and continue operating.
If the FWD and RVS inputs are turned ON simultaneously, the motor will decelerate to a stop.
When the operation data No. is changed during continuous operation, the speed will change to the one specified for the new operation data No.

■ +JOG input, -JOG input

These signals start the JOG operation. (p.193)
Turn the +JOG signal to ON, to perform JOG operation in the positive direction.
Turn the -JOG signal to ON, to perform JOG operation in the negative direction.
Related parameter

MEXEO2 tree view	Parameter name	Description	Initial value
	JOG travel amount	Sets the travel amount for JOG operation. [Setting range] 1 to $8,388,607$ step	1
Operation	JOG operating speed	Sets the operating speed for JOG operation. [Setting range] 1 to $1,000,000 ~ \mathrm{~Hz}$	1,000
	Acceleration/		
deceleration rate of JOG	Sets the acceleration/deceleration rate (acceleration/deceleration time) for JOG operation. [Setting range] 1 to $1,000,000(1=0.001 \mathrm{~ms} / \mathrm{kHz}$ or $1=0.001 \mathrm{~s})$	1,000	
	JOG starting speed	Sets the starting speed for JOG operation. [Setting range] 0 to $1,000,000 ~ \mathrm{~Hz}$	500

STOP input

When the STOP input turns ON, the motor will stop.
When the STOP input turns ON while a positioning operation is being performed, the balance of the travel amount will be cleared. Refer to p .196 for stop action.

Related parameter

MEXEO2 tree view	Parameter name	Description	Initial value
I/O	STOP input action	Sets how the motor should stop when a STOP input is turned ON. [Setting range] 0: Immediate stop 1: Deceleration stop 2: Immediate stop \& Current OFF 3: Deceleration stop \& Current OFF	

C-ON input

This signal is used to excite the motor.
The motor will be excited when the C -ON input is ON , while the motor will become non-excitation status when the C-ON input is OFF.
When an electromagnetic brake motor is used, the electromagnetic brake will be released after the motor is excited.
memo When the C-ON input is not assigned to the direct I/O or remote I/O, this input will always be set to ON. When assigning to both direct I/O and remote I/O, the function will be executed when both of them are set to ON .

- FREE input

When the FREE input is turned ON, the motor current will be cut off. The motor will lose its holding torque, and the output shaft can be turned manually. When an electromagnetic brake motor is used, the electromagnetic brake will also be released.

Note Do not turn the FREE input ON when driving a vertical load. Since the motor loses its holding torque, the load may drop.

Relations among the status of the FREE input, the C-ON input and the output shaft are shown in the tables.
Motor without an electromagnetic brake

FREE input	OFF	ON
OFF	Output shaft is in a released state	Output shaft is in a holding state by motor excitation
ON	Output shaft is in a released state	Output shaft is in a released state

Motor with an electromagnetic brake

FREE input	OFF	ON
OFF	Output shaft is in a holding state by electromagnetic brake	Output shaft is in a holding state by motor excitation
ON	Output shaft is in a released state	Output shaft is in a released state

P-PRESET input

This is a signal for the command position preset.
When the P-PRESET input is turned ON, the command position is set as the value of the "Preset position" parameter.
(This signal will become effective when turning from OFF to ON.)
However, the preset will not execute in the following conditions.

- When an alarm is present.
- When the motor is operating.

Related parameter

MEXE02 tree view	Parameter name	Description	Initial value
Coordinates	Preset position	Sets the preset position. [Setting range] $-8,388,608$ to $8,388,607$ step	0

ALM-RST input

When an alarm generates, the motor will stop. When the ALM-RST input is turned from ON to OFF, the alarm will be reset. (The alarm will be reset at the OFF edge of the ALM-RST input.) Always reset an alarm after removing the cause of the alarm and after ensuring safety.
Note that some alarms cannot be reset with the ALM-RST input. Refer to p .143 for alarm descriptions.

HMI input

When the HMI input is turned ON, the function limitation of the MEXEO2 or OPX-2A will be released.
When the HMI input is turned OFF, the function limitation will be imposed.
The following functions will be limited to execute.

- I/O test
- Test operation
- Teaching
- Parameters setting, writing, downloading, initializing
- Data setting, clearing, initializing
memo When the HMI input is not assigned to the input terminal, this input will always be set to ON. When assigning to both direct I/O and remote I/O, the function will be executed when both of them are set to ON .

1-4 Output signals

The output signals of the driver are photocoupler/open-collector output.

- Direct I/O \qquad I/O for normally open: "ON: Current-carrying", "OFF: Not current-carrying" I/O for normally closed: "ON: Not current-carrying", "OFF: Current-carrying"
- Remote I/O. \qquad "ON: 1", "OFF: 0"
- Internal output circuit

- ALM output

Refer to p .143 for alarm descriptions.

- Direct I/O

When an alarm generates, the ALM output will turn OFF. At the same time, the ALM LED (or ALARM LED) of the driver will blink and the motor current will be cut off and stop. The ALM output is normally closed.

- Remote I/O

When an alarm generates, the ALM output will turn ON. At the same time, the ALM LED (or ALARM LED) of the driver will blink and the motor current will be cut off and stop. The ALM output is normally open.

- Related parameter

MEXE02 tree view	Parameter name	Description	Initial value
Alarm	Overload alarm	Sets the condition that an overload alarm generates. [Setting range] 1 to $300(1=0.1 \mathrm{~s})$	50
	Excessive position deviation alarm at current ON	Sets the condition that an excessive position deviation alarm generates when the motor is in a state of current ON. [Setting range] 1 to $30,000(1=0.01$ rev)	300
	Return-to-home incomplete alarm	When the positioning operation is started while the position origin has not been set, selects whether the alarm generates or not. [Setting range] $0:$ Disable $1:$ Enable	0

MEXE02 tree view	Parameter name	Description	Initial value
Alarm	Excessive position deviation alarm at current OFF	Sets the condition that an excessive position deviation alarm generates when the motor is in a state of current OFF. If the position deviation exceeds the setting value in the "Excessive position deviation alarm at current ON" parameter, the excessive position deviation warning at current OFF generates. In addition, if the C -ON input is turned ON , the excessive position deviation alarm at current OFF generates. [Setting range] 1 to 30,000 ($1=0.01 \mathrm{rev}$)	10,000
Communication	Communication timeout	Sets the condition in which a communication timeout occurs in RS-485 communication. It is not monitored when the set value is 0 . [Setting range] 0 : Not monitored 1 to $10,000 \mathrm{~ms}$	0
	Communication error alarm	Sets the condition in which a RS-485 communication error alarm generates. A communication error alarm generates after a RS-485 communication error has occurred by the number of times set here. [Setting range] 1 to 10 times	3

WNG output

When a warning generates, the WNG output turns ON. Refer to p .150 for warning descriptions.
Related parameter

MEXE02 tree view	Parameter name	Description	Initial value
Warning	Overheat warning	Sets the condition that a main circuit overheat warning generates. [Setting range] 40 to $85^{\circ} \mathrm{C}$	85
	Overload warning	Sets the condition that an overload warning generates. [Setting range] 1 to 300 ($1=0.1$ s)	50
	Overspeed warning	Sets the condition that an overspeed warning generates. [Setting range] 1 to $5,000 \mathrm{r} / \mathrm{min}$	4,500
	Overvoltage warning	Sets the condition that an overvoltage warning generates. [Setting range] AC power input: 120 to 450 V DC power input: 150 to $630 \mathrm{~V}(1=0.1 \mathrm{~V})$	AC power input: 435 DC power input: 630
	Undervoltage warning	Sets the condition that an undervoltage warning generates. [Setting range] AC power input: 120 to 280 V DC power input: 150 to 630 V ($1=0.1 \mathrm{~V}$)	AC power input: 120 DC power input: 180
	Excessive position deviation warning at current ON	Sets the condition that an excessive position deviation warning generates when the motor is in a state of current ON. [Setting range] 1 to 30,000 ($1=0.01 \mathrm{rev}$)	300

READY output

When the driver becomes ready, the READY output turns ON. Input operating commands to the driver after the READY output has turned ON.
The READY output turns ON when all of the following conditions are satisfied.

- The driver main power supply is turned ON.
- All inputs which start operation are OFF
- The FREE input is OFF
- The C-ON input is ON (When the C-ON input is assigned)
- The STOP input is OFF
- An alarm is not present.
- The motor is not operating.
- Test function, downloading or teaching function was not performed using the MEXE02.
- Test operation, downloading, initializing or teaching function was not performed using the OPX-2A.
- Configuration commands, all data initialization commands and batch non-volatile memory read commands are not executed via RS-485 communication.

■ HOME-P output

The HOME-P output turns ON corresponding to the setting of the "HOME-P output function selection" parameter. Refer to p. 198 for setting the position origin.

- When "HOME-P output function selection" parameter is set to "Home output"

When the command position of the driver is in the home while the MOVE output is OFF, the HOME-P output will turn ON. However, the HOME-P output remains OFF when the position origin for the driver has not been set.

- When "HOME-P output function selection" parameter is set to "Return-to-home complete output" Regardless of the command position by the driver, if the position origin for the driver is set, the HOME-P output will turn ON. Therefore, it turns ON after completing the return-to-home operation or preset.
Once the HOME-P output turns ON, it will not turn OFF until the motor has moved from the position origin.
- Related parameter

MEXE02 tree view	Parameter name	Description	Initial value
I/O	HOME-P output	Sets the timing to output the HOME-P output. function selection	[Setting range $]$ $0:$ Home output $1:$ Return-to-home complete output
		0	

MOVE output

The MOVE output turns ON while the motor is operating.

Related parameter

MEXEO2 tree view	Parameter name	Description	Initial value
I/O	Minimum ON time for MOVE output	Sets the minimum ON time for MOVE output. [Setting range] 0 to 255 ms	0

- END output

When the motor has completed its movement, the END output will turn ON. When the motor was converged in a position of the "END signal range" parameter against the command position while the MOVE output is in an OFF status, the END output turns ON.

Related parameter

MEXE02 tree view	Parameter name	Description	Initial value
I/O	END signal range	Sets the output range of the END signal (the motor operation converges within this angular range). [Setting range] 0 to $180\left(1=0.1^{\circ}\right)$	18
	Positioning complete output offset	Sets the offset for the END signal (the offset for converging angular range). [Setting range] $-18 \text { to } 18\left(1=0.1^{\circ}\right)$	0

- TLC output

When the load exceeds the motor torque range, the TLC output will turn ON.
When performing push-motion operation, if the load exceeds the torque range calculated from the current ratio of push-motion operation, the TLC output will turn ON.
This output can be used for the completion signal of the push-motion operation.

- AREA1 to AREA3 outputs

The AREA output turns ON when the motor is inside the area set by the parameters. It turns ON when the motor is inside the area even when the motor stops.

Related parameter

MEXE02 tree view	Parameter name	Description	Initial value
1/O	AREA1 positive direction position	Sets the AREA1 to AREA3 positive direction position. [Setting range] $-8,388,608 \text { to 8,388,607 step }$	0
	AREA2 positive direction position		
	AREA3 positive direction position		
	AREA1 negative direction position	Sets the AREA1 to AREA3 negative direction position. [Setting range] $-8,388,608$ to $8,388,607$ step	0
	AREA2 negative direction position		
	AREA3 negative direction position		

- When the "AREA positive direction position" parameter < "AREA negative direction position" parameter
To turn the AREA output ON:
Motor position \leq AREA positive direction position, or
Motor position \geq AREA negative direction position

- When the "AREA positive direction position" parameter > "AREA negative direction position" parameter
To turn the AREA output ON:
AREA negative direction position \leq Motor position \leq AREA
positive direction position
AREA output ON OFF AREA negative AREA positive
- When the "AREA positive direction position" parameter = "AREA negative direction position" parameter
To turn the AREA output ON:
Motor position $=$ AREA negative direction position $=$ AREA positive direction position
memo When using AREA1 to AREA3 output to confirm the motor position, you can use two types - the command position and the actual position.
AREA1 and AREA2: Command position
AREA3: Actual position

TIM output

The TIM output will turn ON every time the motor output shaft rotates by 7.2°.
If the command speed is faster than $30 \mathrm{r} / \mathrm{min}$, TIM output will not be output correctly.

memo The TIM output is a signal that is output for 50 times per revolution of the motor output shaft. When the TIM output is used, set the resolution to be an integral multiple of 50 using the "Electronic gear" parameters.

- S-BSY output

The S-BSY output turns ON while internal processing of the driver is being executed.
In the following condition, the driver will be in an internal processing status.

- Issuing maintenance commands via RS-485 communication

MPS output (AC power input only)

The MPS output turns ON when the driver main power is ON.

Response output

The response output is the output signal that shows the ON/OFF status corresponding to the input signals. The tables show the correspondence between the input signals and output signals.

Input signal	Output signal
FWD	FWD_R
RVS	RVS_R
HOME	HOME_R
START	START_R
SSTART	SSTART_R
+JOG	+JOG_R
-JOG	-JOG_R
MSO	MSO_R
MS1	MS1_R

Input signal	Output signal
MS2	MS2_R
MS3	MS3_R
MS4	MS4_R
MS5	MS5_R
FREE	FREE_R
C-ON	C-ON_R
STOP	STOP_R
M0	M0_R
M1	M1_R

Input signal	Output signal
M2	M2_R
M3	M3_R
M4	M4_R
M5	M5_R
+LS	+LS_R
-LS	-LS_R
HOMES	HOMES_R
SLIT	SLIT_R

memo The response output is the output signal to return the status of the input signal. Therefore, the output signals corresponding to the input signals for motor operation (START_R output etc.) do not show the movement of the motor itself.

1-5 Sensor inputs

Internal input circuit

+ LS input, -LS input

These signals are input from the applicable limit sensors. The + LS input is for the positive direction sensor and the -LS input is for the negative direction sensor.

- Return-to-home operationWhen the +LS or -LS input is detected, perform the return-to-home operation according to the setting of the "Home-seeking mode" parameter.
- Any other operationDetect the hardware overtravel and stop the motor. Refer to p. 196 for hardware overtravel.

Related parameter

MEXE02 tree view	Parameter name	Description	Initial value
I/O	Hardware overtravel	Sets whether to enable or disable hardware overtravel detection using \pm LS inputs. [Setting range] 0: Disable 1: Enable	1
	Overtravel action	Sets the motor stop action to take place upon the occurrence of overtravel. [Setting range] 0: Immediate stop $1:$ Decelerate stop	

HOMES input

The HOMES input is the input for the mechanical home sensor when setting the "Home-seeking mode" parameter to the "3-sensor mode." Refer to p. 179 for return-to-home operation.

Related parameter

MEXE02 tree view	Parameter name	Description	Initial value
I/O	HOMES logic level	Sets the HOMES input logic. [Setting range] 0: Make (N.O.) 1: Brake (N.C.)	0

SLIT input

Connect the SLIT input when using motorized linear slides equipped with a slit.
When detecting the home, use of the SLIT input in addition to the HOMES will increase the accuracy of home detection. Refer to p. 179 for return-to-home operation.
Related parameter

MEXE02 tree view	Parameter name	Description	Initial value
I/O	SLIT logic level	Sets the SLIT input logic. [Setting range] 0: Make (N.O.) 1: Brake (N.C.)	0

1-6 General signals (R0 to R15)

R0 to R15 are general signals that enable control via RS-485 communication.
Using RO to R15, I/O signals for the external device can be controlled by the host controller via the driver.
The direct I/O of the driver can be used as an I/O unit.
Refer to the following example for setting of the general signals.

- When outputting the signals from the host controller to the external device

Assign the general signal RO to the OUTO output and NET-INO.
When setting the NET-INO to 1 , the OUTO output turns ON. When setting the NET-INO to 0 , the OUTO output turns OFF.

- When inputting the output of the external device to the host controller

Assign the general signal R1 to the IN7 input and NET-OUT15.
When turning the IN7 input ON by the external device, the NET-OUT15 becomes 1 . When turning the IN7 input OFF, the NET-OUT15 becomes 0 . The logic level of the IN7 input can be set using "IN7 input logic level setting" parameter.

* The figure shows the AC power input.

2 Method of control via I/O

2-1 Guidance

If you are new to the AR Series FLEX built-in controller type, read this section to understand the operating methods along with the operation flow.

Note Before operating the motor, check the condition of the surrounding area to ensure safety.

AC power input

STEP 1 Check the installation and connection

STEP 2 Turn on the power and set the operation data

STEP 3 Operate the motor

STEP $4 \quad$ Were you able to operate the motor properly?

How did it go? Were you able to operate the motor properly? If the motor does not function, check the following points:

- Are the regeneration resistor thermal input terminals (TH 1 and TH 2) on the CN 1 short-circuited?
- Is any alarm present?
- Are the power supply and motor connected securely?

For more detailed settings and functions, refer to "5 Operation type and setting" on p.153.

DC power input

STEP 1 Check the installation and connection

STEP 2 Turn on the power and set the operation data

STEP 3 Operate the motor

STEP 4 Were you able to operate the motor properly?

How did it go? Were you able to operate the motor properly? If the motor does not function, check the following points:

- Is any alarm present?
- Are the power supply and motor connected securely?

For more detailed settings and functions, refer to "5 Operation type and setting" on p.153.

2-2 Operation data

Up to 64 operation data can be set (data Nos. 0 to 63).
If the data is changed, a recalculation and setup will be performed after the operation is stopped.

Data	Description	Initial value
Position No. 0 to Position No. 63	Sets the position (distance) for positioning operation. [Setting range] $-8,388,608$ to $+8,388,607$ step	0
Operating speed No. 0 to Operating speed No. 63	Sets the operating speed in positioning operation and continuous operation. [Setting range] 0 to $1,000,000 \mathrm{~Hz}$	1,000
Operation mode No. 0 to Operation mode No. 63	Selects how to specify the position (travel amount) in positioning operation. [Setting range] 0 : Incremental (INC) 1: Absolute (ABS)	0
Operation function No. 0 to Operation function No. 63	Sets the operation mode to execute positioning operation. [Setting range] 0 : Single-motion 1:Linked-motion 2: Linked-motion 2 3: Push	0
Acceleration No. 0 to Acceleration No. 63	Sets the acceleration rate (acceleration time) in positioning operation and continuous operation. *1 [Setting range] 1 to $1,000,000(1=0.001 \mathrm{~ms} / \mathrm{kHz}$ or $1=0.001 \mathrm{~s}) * 2$	1,000
Deceleration No. 0 to Deceleration No. 63	Sets the deceleration rate (deceleration time) in positioning operation and continuous operation. *1 [Setting range] 1 to $1,000,000(1=0.001 \mathrm{~ms} / \mathrm{kHz}$ or $1=0.001 \mathrm{~s}) * 2$	1,000
Push current No. 0 to Push current No. 63	Sets the current rate of push-motion operation. [Setting range] 0 to 1,000 ($1=0.1 \%$)	200
Sequential positioning No. 0 to Sequential positioning No. 63	Sets whether to enable or disable sequential positioning operation. [Setting range] 0 : Disable 1: Enable	0
Dwell time No. 0 to Dwell time No. 63	Sets the dwell time to be used in linked-motion 2 operation. [Setting range] 0 to 50,000 ($1=0.001 \mathrm{~s}$)	0

*1 This item is effective when the "Acceleration/deceleration type" parameter is set to "Separate." If this parameter is set to "Common," the values of the "Common acceleration" and "Common deceleration" parameters will be used (initial value: separate).
*2 Acceleration/deceleration rate ($\mathrm{ms} / \mathrm{kHz}$) or acceleration/deceleration time (s) can be selected using "Acceleration/ deceleration unit" parameter (initial value: $\mathrm{ms} / \mathrm{kHz}$).

2-3 Parameter

- Timing for parameter to update

The parameters are saved in the RAM or non-volatile memory. The data saved in the RAM will be erased once the DC power supply is turned off. On the other hand, the parameters saved in the non-volatile memory will be retained even after the DC power supply is turned off.
When turning the driver DC power supply on, the parameters saved in the non-volatile memory will be sent to the RAM. Then, the recalculation and setup for the parameters are executed in the RAM.

Parameters having set via RS-485 communication or industrial network are saved in the RAM. To save the parameters stored in the RAM to the non-volatile memory, execute the "Batch non-volatile memory write" of the maintenance command.
The parameters set with the MEXEO2 will be saved in the non-volatile memory if "data writing" is performed.
When a parameter is changed, the timing to update the new value varies depending on the parameter. Refer to the following four types.
memo - Parameters set via RS-485 communication or industrial network are saved in the RAM. If parameters, which are required turning on the power again in order to update, are changed, be sure to save them in the non-volatile memory before turning off the power.

- The non-volatile memory can be rewritten approximately 100,000 times.

Notation rules
In this chapter, each update timing is represented in an alphabet.

Notation	Update timing
A	Recalculation and setup are immediately executed when the parameter is written.
B	Recalculation and setup are executed when the operation is stopped.
C	Recalculation and setup are executed after Configuration is executed or the DC power supply is turned on again.
D	Recalculation and setup are executed after the DC power supply is turned on again.

Parameter list

I/O parameter (p.112)	- STOP input action	- Minimum ON time for MOVE output
	- Hardware overtravel	- LS contact configuration
	- Overtravel action	- HOMES logic level
	- END signal range	- SLIT logic level
	- Positioning complete output offset	- MS0 operation No. selection
	- AREA1 positive direction position	- MS1 operation No. selection
	- AREA1 negative direction position	- MS2 operation No. selection
	- AREA2 positive direction position	- MS3 operation No. selection
	- AREA2 negative direction position	- MS4 operation No. selection
	- AREA3 positive direction position	- MS5 operation No. selection
	- AREA3 negative direction position	- HOME-P output function selection
Motor parameter(p.113)	- RUN current	- Moving average time
	- STOP current	- Filter selection
	- Position loop gain	- Speed difference gain 1
	- Speed loop gain	- Speed difference gain 2
	- Speed loop integral time constant	- Control mode
	- Speed filter	- Smooth drive

Operation parameter (p.114)	- Common acceleration - Common deceleration - Starting speed - JOG operating speed - Acceleration/deceleration rate of JOG - JOG starting speed - Acceleration/deceleration type	- Acceleration/deceleration unit - Automatic return operation - Operation speed of automatic return - Acceleration (deceleration) of automatic return - Starting speed of automatic return - JOG travel amount
Home operation parameter (p.115)	- Home-seeking mode - Operating speed of home-seeking - Acceleration/deceleration of homeseeking - Starting speed of home-seeking - Position offset of home-seeking	- Starting direction of home-seeking - SLIT detection with home-seeking - TIM signal detection with home-seeking - Operating current of home-seeking with push-motion
Alarm parameter (p.116)	- Overload alarm - Excessive position deviation alarm at current ON	- Return-to-home incomplete alarm - Excessive position deviation alarm at current OFF
Warning parameter (p.116)	- Overheat warning - Overload warning - Overspeed warning	- Overvoltage warning - Undervoltage warning - Excessive position deviation warning at current ON
Coordinates parameter (p.117)	- Electronic gear A - Electronic gear B - Motor rotation direction - Software overtravel	- Positive software limit - Negative software limit - Preset position - Wrap setting - Wrap setting range
Common parameter (p.117)	- Data setter speed display	- Data setter edit
I/O function [input] parameter (p.118)	- INO to IN7 input function selection - INO to IN7 input logic level setting	
I/O function [output] parameter (p.118)	- OUT0 to OUT5 output function select	
I/O function [RS-485] parameter (p.119)	- NET-INO to NET-IN15 input function selection - NET-OUT0 to NET-OUT15 output function selection	
Communication parameter (p.120)	- Communication timeout - Communication error alarm - Communication parity	- Communication stop bit - Transmission waiting time

- I/O parameter

Parameter name	Description	Initial value	Update
STOP input action	Sets how the motor should stop when a STOP input is turned ON. [Setting range] 0 : Immediate stop 1: Decelerate stop 2: Immediate stop \& Current OFF 3: Deceleration stop \& Current OFF	1	A
Hardware overtravel	Sets whether to enable or disable hardware overtravel detection using \pm LS inputs. [Setting range] 0 : Disable 1: Enable	1	A
Overtravel action	Sets the motor stop action to take place upon the occurrence of overtravel. [Setting range] 0: Immediate stop 1: Decelerate stop	0	A
END signal range	Sets the output range of the END signal (the motor operation converges within this angular range). [Setting range] 0 to 180 ($1=0.1^{\circ}$)	18	A
Positioning complete output offset	Sets the offset for the END signal (the offset for converging angular range). [Setting range] $-18 \text { to } 18\left(1=0.1^{\circ}\right)$	0	A
AREA1 positive direction position			A
AREA2 positive direction position	[Setting range]	0	A
AREA3 positive direction position			A
AREA1 negative direction position			A
AREA2 negative direction position	[Setting range]	0	A
AREA3 negative direction position			A
Minimum ON time for MOVE output	Sets the minimum ON time for MOVE output. [Setting range] 0 to 255 ms	0	A
LS contact configuration	Sets the \pm LS input logics. [Setting range] 0: Make (N.O.) 1: Brake (N.C.)	0	C
HOMES logic level	Sets the HOMES input logic. [Setting range] 0: Make (N.O.) 1: Brake (N.C.)	0	C
SLIT logic level	Sets the SLIT input logic. [Setting range] 0: Make (N.O.) 1: Brake (N.C.)	0	C

Parameter name	Description	Initial value	Update
MS0 operation No. selection	Sets operation data No. corresponding to MSO to MS5 input. [Setting range] Operation data No. 0 to 63	0	B
MS1 operation No. selection		1	
MS2 operation No. selection		2	
MS3 operation No. selection		3	
MS4 operation No. selection		4	
MS5 operation No. selection		5	
HOME-P output function selection	Sets the timing to output the HOME-P output. [Setting range] 0: Home output 1: Return-to-home complete output	0	A

Motor parameter

Parameter name	Description	Initial value	Update
RUN current	Sets the motor operating current based on the rated current being 100%. [Setting range] 0 to 1,000 ($1=0.1 \%$)	1,000	A
STOP current	Sets the motor standstill current as a percentage of the rated current, based on the rated current being 100%. [Setting range] 0 to 500 ($1=0.1 \%$)	500	A
Position loop gain	Adjusts the motor response in reaction to the position deviation. [Setting range] 1 to 50	10	A
Speed loop gain	Adjusts the motor response in reaction to the speed deviation. [Setting range] 10 to 200	180	A
Speed loop integral time constant	Adjusts the deviation that cannot be adjusted with the speed loop gain. [Setting range] $100 \text { to } 2,000 \text { (} 1=0.1 \mathrm{~ms} \text {) }$	1,000	A
Speed filter	Adjusts the motor response. [Setting range] 0 to 200 ms	1	B
Moving average time	Sets the time constant for the moving average filter. [Setting range] 1 to 200 ms	1	B
Filter selection	Sets the filter function to adjust the motor response. [Setting range] 0: Speed filter 1: Moving average filter	0	C
Speed difference gain 1	Adjusts vibration during operation. [Setting range] 0 to 500	45	A
Speed difference gain 2	Adjusts vibration during acceleration/deceleration. [Setting range] 0 to 500	45	A
Control mode	Sets the control mode of the driver. [Setting range] 0 : Normal mode 1: Current control mode	0	C

Parameter name	Description	Initial value	Update
Smooth drive	Sets whether to enable or disable smooth drive function. [Setting range] 0: Disable 1: Enable	1	C

- Operation parameter

Parameter name	Description	Initial value	Update
Common acceleration	Sets the common acceleration rate (common acceleration time) in positioning operation and continuous operation. [Setting range] 1 to 1,000,000 (1=0.001 ms/kHz or 1=0.001 s)*	1,000	B
Common deceleration	Sets the common deceleration rate (common deceleration time) in positioning operation and continuous operation. [Setting range] 1 to 1,000,000 (1=0.001 ms/kHz or 1=0.001 s)*	1,000	B
Sets the starting speed in positioning operation and continuous operation. The motor will operate at the starting speed if the operating speed is below the starting speed. [Setting range] 0 to 1,000,000 Hz	500	B	B

Parameter name	Description	Initial value	Update
JOG travel amount	Sets the travel amount for JOG operation. [Setting range] 1 to 8,388,607 step	1	B

* Acceleration/deceleration rate (ms/kHz) or acceleration/deceleration time (s) can be selected using "Acceleration/ deceleration unit" parameter (initial value: acceleration/deceleration rate).

Home operation parameter

Parameter name	Description	Initial value	Update
Home-seeking mode	Sets the mode for return-to-home operation. [Setting range] 0: 2-sensor mode 1:3-sensor mode 2: Push mode	1	B
Operating speed of homeseeking	Sets the operating speed for return-to-home operation. [Setting range] 1 to $1,000,000 \mathrm{~Hz}$	1,000	B
Acceleration/deceleration of home-seeking	Sets the acceleration/ deceleration rate (acceleration/ deceleration time) for return-to-home operation. [Setting range] 1 to $1,000,000(1=0.001 \mathrm{~ms} / \mathrm{kHz}$ or $1=0.001 \mathrm{~s})$ *	1,000	B
Starting speed of homeseeking	Sets the starting speed for return-to-home operation. [Setting range] 1 to $1,000,000 \mathrm{~Hz}$	500	B
Position offset of homeseeking	Sets the amount of offset from mechanical home. [Setting range] $-8,388,608 \text { to } 8,388,607 \text { step }$	0	B
Starting direction of homeseeking	Sets the starting direction for home detection. [Setting range] 0 : Negative direction 1: Positive direction	1	B
SLIT detection with homeseeking	Sets whether or not to concurrently use the SLIT input for return-to-home operation. [Setting range] 0 : Disable 1: Enable	0	B
TIM signal detection with home-seeking	Sets whether or not to concurrently use the TIM signal for return-to-home operation. [Setting range] 0: Disable 1: Enable	0	B
Operating current of home-seeking with pushmotion	Sets the operating current for push-motion return-tohome operation based on the rated current being 100%. [Setting range] 0 to 1,000 (1=0.1 \%)	1,000	B

* Acceleration/deceleration rate ($\mathrm{ms} / \mathrm{kHz}$) or acceleration/deceleration time (s) can be selected using "Acceleration/ deceleration unit" parameter (initial value: acceleration/deceleration rate).

Alarm parameter

Parameter name	Description	Initial value	Update
Overload alarm	Sets the condition that an overload alarm generates. [Setting range] 1 to 300 ($1=0.1$ s)	50	A
Excessive position deviation alarm at current ON	Sets the condition that an excessive position deviation alarm generates when the motor is in a state of current ON. [Setting range] 1 to 30,000 (1=0.01 rev)	300	A
Return-to-home incomplete alarm	When the positioning operation is started while the position origin has not been set, selects whether the alarm generates or not. [Setting range] 0 : Disable 1: Enable	0	C
Excessive position deviation alarm at current OFF	Sets the condition that an excessive position deviation alarm generates when the motor is in a state of current OFF. If the position deviation exceeds the setting value in the "Excessive position deviation alarm at current ON" parameter, the excessive position deviation warning at current OFF generates. In addition, if the C-ON input is turned ON, the excessive position deviation alarm at current OFF generates. [Setting range] 1 to 30,000 ($1=0.01 \mathrm{rev}$)	10,000	A

Warning parameter

Parameter name	Description	Initial value	Update
Overheat warning	Sets the condition that a main circuit overheat warning generates. [Setting range] $40 \text { to } 85^{\circ} \mathrm{C}$	85	A
Overload warning	Sets the condition that an overload warning generates. [Setting range] 1 to 300 ($1=0.1 \mathrm{~s}$)	50	A
Overspeed warning	Sets the condition that an overspeed warning generates. [Setting range] 1 to $5,000 \mathrm{r} / \mathrm{min}$	4,500	A
Overvoltage warning (AC power input)	Sets the condition that an overvoltage warning generates. [Setting range] 120 to 450 V	435	A
Overvoltage warning (DC power input)	Sets the condition that an overvoltage warning generates. [Setting range] 150 to 630 ($1=0.1 \mathrm{~V}$)	630	A
Undervoltage warning (AC power input)	Sets the condition that an undervoltage warning generates. [Setting range] 120 to 280 V	120	A
Undervoltage warning (DC power input)	Sets the condition that an undervoltage warning generates. [Setting range] 150 to 630 ($1=0.1 \mathrm{~V}$)	180	A
Excessive position deviation warning at current ON	Sets the condition that an excessive position deviation warning generates when the motor is in a state of current ON. [Setting range] 1 to 30,000 (1=0.01 rev)	300	A

Coordinates parameter

Parameter name	Description	Initial value	Update
Electronic gear A	Sets the denominator of electronic gear. [Setting range] 1 to 65,535	1	C
Electronic gear B	Sets the numerator of electronic gear. [Setting range] 1 to 65,535	1	C
Motor rotation direction	Sets the rotation direction of motor output shaft. [Setting range] 0 : Positive direction=CCW 1: Positive direction=CW	1	C
Software overtravel	Sets whether to enable or disable software overtravel detection using soft limits. [Setting range] 0 : Disable 1: Enable	1	A
Positive software limit	Sets the value of soft limit in positive direction. [Setting range] $-8,388,608 \text { to } 8,388,607 \text { step }$	8,388,607	A
Negative software limit	Sets the value of soft limit in negative direction. [Setting range] $-8,388,608 \text { to } 8,388,607 \text { step }$	-8,388,608	A
Preset position	Sets the preset position. [Setting range] $-8,388,608 \text { to } 8,388,607 \text { step }$	0	A
Wrap setting	Sets whether to enable or disable wrap function. [Setting range] 0: Disable 1: Enable	0	C
Wrap setting range	Sets the wrap setting range. [Setting range] 1 to 8,388,607 step	1,000	C

Common parameter

Parameter name	Description	Initial value	Update
Data setter speed display	Sets the display method of the speed monitor for the OPX-2A. [Setting range] 0: Signed 1: Absolute value	0	A
Data setter edit	Sets whether it is possible to edit using the OPX-2A. [Setting range] 0: Disable 1: Enable	1	A

I/O function [input] parameter

Parameter name	Description	Initial value	Update
INO input function selection	Assigns the input signals to IN0 to IN7 of the input terminals. [Setting range] Refer to the following table.	3: HOME	C
IN1 input function selection		4: START	
IN2 input function selection		48: M0	
IN3 input function selection		49: M1	
IN4 input function selection		50: M2	
IN5 input function selection		16: FREE	
IN6 input function selection		18: STOP	
IN7 input function selection		24: ALM-RST	
INO input logic level setting	Changes the logic level setting for input terminals INO to IN7. [Setting range] 0: Make (N.O.) 1: Brake (N.C.)	0	C
IN1 input logic level setting			
IN2 input logic level setting			
IN3 input logic level setting			
IN4 input logic level setting			
IN5 input logic level setting			
IN6 input logic level setting			
IN7 input logic level setting			

Setting range for IN input function selection

0 : No function	8: MSO	18: STOP	35: R3	43: R11	51: M3
1: FWD	9: MS1	24: ALM-RST	36: R4	44: R12	52: M4
2: RVS	10: MS2	25: P-PRESET	37: R5	45: R13	53: M5
3: HOME	11: MS3	26: P-CLR*	38: R6	46: R14	
4: START	12: MS4	27: HMI	39: R7	47: R15	
5: SSTART	13: MS5	32: R0	40: R8	48: MO	
6: +JOG	16: FREE	33: R1	41: R9	49: M1	
7:-JOG	17: C-ON	34: R2	42: R10	50: M2	

* It cannot be used.

I/O function [output] parameter

Parameter name	Description	Initial value	Update
OUTO output function selection	Assigns the output signals to OUT0 to OUT5 of the output terminals. [Setting range] Refer to the following table.	70: HOME-P	C
OUT1 output function selection		69: END	
OUT2 output function selection		73: AREA1	
OUT3 output function selection		67: READY	
OUT4 output function selection		66: WNG	
OUT5 output function selection		65: ALM	

Setting range for OUT output function selection

0: No function	10: MS2_R	35: R3	45: R13	61: -LS_R	72: TIM
1: FWD_R	11: MS3_R	36: R4	46: R14	62: HOMES_R	73: AREA1
2: RVS_R	12: MS4_R	37: R5	47: R15	63: SLIT_R	74: AREA2
3: HOME_R	13: MS5_R	38: R6	48: M0_R	65: ALM	75: AREA3
4: START_R	16: FREE_R	39: R7	49: M1_R	66:WNG	80: S-BSY
5: SSTART_R	17: C-ON_R	40: R8	50: M2_R	67: READY	82: MPS*
6: +JOG_R	18: STOP_R	41:R9	51:M3_R	68: MOVE	
7: -JOG_R	32: R0	42: R10	52: M4_R	69: END	
8: MS0_R	33: R1	43: R11	53: M5_R	70: HOME-P	
9: MS1_R	34: R2	44:R12	60:+LS_R	71:TLC	

* AC power input only.

I/O function [RS-485] parameter

Parameter name	Description	Initial value	Update
NET-IN0 input function selection	Assigns the input signals to NET-INO to NET-IN15. [Setting range] Refer to "Setting range for NET-IN input function selection".	48: M0	C
NET-IN1 input function selection		49: M1	
NET-IN2 input function selection		50: M2	
NET-IN3 input function selection		4: START	
NET-IN4 input function selection		3: HOME	
NET-IN5 input function selection		18: STOP	
NET-IN6 input function selection		16: FREE	
NET-IN7 input function selection		0: No function	
NET-IN8 input function selection		8: MS0	
NET-IN9 input function selection		9: MS1	
NET-IN10 input function selection		10: MS2	
NET-IN11 input function selection		5: SSTART	
NET-IN12 input function selection		6: +JOG	
NET-IN13 input function selection		7: -JOG	
NET-IN14 input function selection		1: FWD	
NET-IN15 input function selection		2: RVS	
NET-OUT0 output function selection	Assigns the output signals to NET-OUTO to NET-OUT15. [Setting range] Refer to "Setting range for NET-OUT output function selection" on p. 120.	48: M0_R	C
NET-OUT1 output function selection		49: M1_R	
NET-OUT2 output function selection		50: M2_R	
NET-OUT3 output function selection		4: START_R	
NET-OUT4 output function selection		70: HOME-P	
NET-OUT5 output function selection		67: READY	
NET-OUT6 output function selection		66: WNG	
NET-OUT7 output function selection		65: ALM	
NET-OUT8 output function selection		80: S-BSY	
NET-OUT9 output function selection		73: AREA1	
NET-OUT10 output function selection		74: AREA2	
NET-OUT11 output function selection		75: AREA3	
NET-OUT12 output function selection		72: TIM	
NET-OUT13 output function selection		68: MOVE	
NET-OUT14 output function selection		69: END	
NET-OUT15 output function selection		71:TLC	

- Setting range for NET-IN input function selection

0: No function	7: -JOG	16: FREE	32: R0	39: R7	46: R14
1: FWD	8: MS0	17: C-ON	33: R1	40: R8	47: R15
2: RVS	9: MS1	18: STOP	34: R2	41: R9	48: M0
3: HOME	10: MS2	24: ALM-RST	35: R3	42: R10	49: M1
4: START	11: MS3	25: P-PRESET	36: R4	43: R11	50: M2
5: SSTART	12: MS4	26: P-CLR*	37: R5	44: R12	51: M3
6: +JOG	13: MS5	27: HMI	38: R6	45: R13	52: M4
				53: M5	

[^2]- Setting range for NET-OUT output function selection

0: No function	10: MS2_R	35: R3	45: R13	61: -LS_R	72: TIM
1: FWD_R	11: MS3_R	36: R4	46: R14	62: HOMES_R	73: AREA1
2: RVS_R	12: MS4_R	37: R5	47: R15	63: SLIT_R	74: AREA2
3: HOME_R	13: MS5_R	38: R6	48: M0_R	65: ALM	75: AREA3
4: START_R	16: FREE_R	39: R7	49: M1_R	66:WNG	80: S-BSY
5: SSTART_R	17: C-ON_R	40: R8	50: M2_R	67: READY	82: MPS *
6: +JOG_R	18: STOP_R	41: R9	51: M3_R	68: MOVE	
7: -JOG_R	32: R0	42: R10	52: M4_R	69: END	
8: MS0_R	33: R1	43: R11	53: M5_R	70: HOME-P	
9: MS1_R	34: R2	44: R12	60:+LS_R	71:TLC	

Communication parameter

Parameter name	Description	Initial value	Update
Communication timeout	Sets the condition in which a communication timeout occurs in RS-485 communication. It is not monitored when the set value is 0 . [Setting range] 0 : Not monitored 1 to $10,000 \mathrm{~ms}$	0	A
Communication error alarm	Sets the condition in which a RS-485 communication error alarm generates. A communication error alarm generates after a RS-485 communication error has occurred by the number of times set here. [Setting range] 1 to 10 times	3	A
Communication parity	Sets the parity of RS-485 communication. [Setting range] 0 : None 1: Even 2: Odd	1	D
Communication stop bit	Sets the stop bit of RS-485 communication. [Setting range] 0: 1 bit 1:2 bits	0	D
Transmission waiting time	Sets the transmission waiting time of RS-485 communication. [Setting range] 0 to 10,000 ($1=0.1 \mathrm{~ms}$)	100	D

3 Operation using the OPX－2A

This chapter explains the overview and operating method for the OPX－2A．
When connect or disconnect the OPX－2A cable，turn off the driver power supply．

3－1 Overview of the OPX－2A

The OPX－2A is a data setter that can set the operation data and parameters，and execute monitor and others．
In addition，the OPX－2A can be used to save the data of driver．There are four destinations（data banks）to save data．

The OPX－2A can be used for the following purposes：
－Set data for the driver．
－Monitor the communication time or communication status．
－Check and clear the alarm records．
－The data set in the driver can be saved to the OPX－2A．
－The data saved in the OPX－2A can be copied to another driver connected to the OPX－2A．

－Notation

In this manual，keys are denoted by symbols，such as 【 $\frac{\text { MODE }}{\text { ESC }}$ 【（SET】【个】 $\downarrow 】 \leftarrow \llbracket \rightarrow$ 】． In figures，a simplified illustration of the display and LED indicators is used，as shown below．

Edit lock function

Enable the edit lock function if you want to prevent data from being edited or cleared．Data cannot be changed or deleted while the edit lock function is enabled．
－Setting the edit lock function
 5 seconds．
The display will show＂Lock＂and the edit lock function will be enabled． The＂LOCK＂LED in the LED indicator area will also be lit．

Loc \hbar

－Canceling the edit lock function

Again in the top screen of each operation mode，press the 【 MODE $\sqrt{\text { ESC }}$ ）key for at least 5 seconds．
The display will show＂UnLock＂and the edit lock function will be cancelled．
 The＂LOCK＂LED in the LED indicator area will turn off．

3-2 Names and functions of parts

$\uparrow \cdot$ Increase or decrease the value.

- Change the selected item.
$\leftarrow \rightarrow$ Navigate through each data to a desired digit.

3-3 How to read the display

The display consists of 7-segment LEDs. (The number " 5 " and alphabet " S " are the same.)

- Numbers

- Alphabets

- Signes

- How to read the LED indicators

When the operation mode is changed or an alarm or warning generates, a corresponding LED will be lit.
While the motor is operating or the edit lock function is enabled, the condition is also indicated by the illumination of a corresponding LED.

3-4 OPX-2A error display

Errors displayed on the OPX-2A are explained.

Error display	Meaning	Action
$\bar{n} E \quad \bar{L} t \quad$ i. i.	A communication error occurred between the OPX-2A and driver.	\bullet Check if the OPX-2A is connected securely. \bullet Check if the OPX-2A cable is disconnected or damaged. \bullet The OPX-2A or the communication part of the driver may have damaged. Contact your nearest Oriental Motor sales office.

3－5 Screen transitions

－Broken line indicates that data writing cannot be executed when internal processing is in progress via RS－485 communication．＂mEm－bUSy＂is displayed even when the 【SET】 key is pressed．
－In the lower screen level except the top screen，press 【 $\frac{\text { MODE }}{\text { ESC }}$ 】 key to return to the previous level．
memo－The following limitations are present while the edit lock function is enabled．
－Data mode，parameter mode：Although they are displayed on the screen，they are unable to operate．
－Clearing the alarm and warning records，clearing the data，position preset，teaching and copy mode：They are not displayed on the screen．
－When the HMI input is in OFF，functions other than monitor mode，upload，verification or viewing of the parameter mode cannot be executed．

－Monitor mode

- Data mode

- Parameter mode, test mode

Writing data is in progress (blinking)

- Copy mode

3-6 Monitor mode

Overview of the monitor mode

- Monitoring the operating status

You can monitor the motor speed, command position, operation data number corresponding to the current operation and operation data number currently selected in real time.
memo A range capable to monitor with the OPX-2A is from - 19,999,999 to 19,999,999 with up to eight digit numbers. However, only seven digit numbers can be shown on the display of the OPX-2A, so only the last seven digit numbers are shown when the monitored value is eight digit numbers, and a dot is marked on the lower right of the display.

- Display example

Actual value	$-19,999,999$	$-10,000,001$	$-10,000,000$	$10,000,000$	$10,000,001$	$19,999,999$
Displayed value	-9999999.	-0000001.	-0000000.	0000000.	0000001.	9999999.

- Checking the alarms/warnings, clearing alarm/warning records, and resetting alarms
- If an alarm or warning generates, a corresponding alarm code or warning code will be displayed. You can check the code to identify the details of the alarm/warning.
- Up to 10 most recent alarms/warnings can be displayed, starting from the latest one.
- You can reset the alarms currently present.
- You can clear alarm/warning records.
- Checking the I/O signals

You can check the ON/OFF status of each I/O signal of the driver.

- Monitor items

- Speed

You can check the motor speed (unit: $\mathrm{r} / \mathrm{min}$).
While the motor is rotating in the CCW direction," - " is shown in front of the displayed value. If the speed is indicated by an absolute value, no sign is shown to indicate the rotating direction. You can select the value display format using the "Data setter speed display" parameter.

- Command position

You can check the command position of the motor with reference to the home.
If a resolution is set, an appropriate value based on the resolution is shown as steps.

- Operation number

You can check the operation data number corresponding to the data used in the current positioning operation.

- Selected number

You can check the operation data number currently selected.

- Alarm

When an alarm generates, a corresponding alarm code will be displayed. You can also reset alarms or check and clear alarm records. Refer to p .144 for details about alarm codes and the method to reset alarms.

Note Do not turn off the driver power supply while an alarm is being reset or alarm records are being cleared (=while the display is blinking). Doing so may damage the data.
memo Some alarms cannot be reset on the OPX-2A. Check by the "Alarm list" on p.144. To reset these alarms, you must turn on the power supply again.

－Warining

When a warning generates，a corresponding warning code will be displayed．You can also check or clear warning records．For details about warning code，refer to p． 150 ．

Note Do not turn off the driver power supply while warning records are being cleared（＝while the display is blinking）．Doing so may damage the data．
memo You can also clear the warning records by turning off the driver power supply

－Direct I／O monitor

You can check the ON／OFF status of each I／O signal of the driver．
Each digit on the 7－segment LED display corresponds to a signal．The LED is lit when the signal is ON，and it is unlit when the signal is OFF．
－Input signals

IN7
Sensor signals monitor

Data mode

Up to 64 sets of motor operation data can be set．Once set，the operation data is saved in the non－volatile memory of the driver．The data will not be lost even after the OPX－2A is disconnected from the driver．

Note Operation data has significant bearing on motor operation．Before setting any operation data，make sure you fully understand the content of the operation data．
memo－If the operations are limited by the edit lock function or HMI input，operation data cannot be edited．
－Operation data can also be set by selecting the ID with the parameter mode．
－If the value you have input is outside the setting range，＂Error＂will be displayed for 1 second．If this error display appears，input a different value that falls within the setting range．
－If［SET】 key is pressed while executing the internal processing via RS－485 communication，＂mEm－ bUSy＂may be displayed．Check the timing when＂mEm－bUSy＂is displayed on p．124．Be sure to wait until all internal processing is completed，before pressing the【SET】 key

Setting item

Setting item	Description	Initial value
Operation mode	Selects how to specify the position（travel amount）in positioning operation． ［Setting range］ 0 ：Incremental 1：Absolute	0
Position	Sets the position（distance）for positioning operation． ［Setting range］ $-8,388,608$ to $+8,388,607$ step	0
Operating speed	Sets the operating speed in positioning operation and continuous operation． ［Setting range］ 1 to $1,000,000 \mathrm{~Hz}$	1，000
Operation function	Sets the operation mode to execute positioning operation． ［Setting range］ 0 ：Single－motion 1：Linked－motion 2：Linked－motion 2 3：Push	0
Sequential positioning	Sets whether to enable or disable sequential positioning operation． ［Setting range］ 0 ：Disable 1：Enable	0
Acceleration＊	Sets the acceleration rate（acceleration time）in positioning operation and continuous operation． ［Setting range］ 0.001 to $1,000.000 \mathrm{~ms} / \mathrm{kHz}$ or 0.001 to $1,000.000 \mathrm{~s}$	1.000
Deceleration＊	Sets the deceleration rate（deceleration time）in positioning operation and continuous operation． ［Setting range］ 0.001 to $1,000.000 \mathrm{~ms} / \mathrm{kHz}$ or 0.001 to $1,000.000 \mathrm{~s}$	1.000
Push current	Sets the current rate of push－motion operation． ［Setting range］ 0.0 to 100.0 \％	20.0
Dwell time	Sets the dwell time to be used in linked－motion 2 operation． ［Setting range］ 0.000 to 50.000 s	0.000

＊This item is effective when the＂Acceleration／deceleration type＂parameter is set to＂Separate．＂ If this parameter is set to＂Common，＂the values of the＂Common acceleration＂and＂Common deceleration＂ parameters will be used．
－How to set the dwell time
When displaying the＂2：Linked－motion 2＂on the＂Operation function＂and pressing the【SET】 key，the screen to set the dwell time is displayed．Input the dwell time using the【个】】】く】 \rightarrow 】 keys and press the【SET】 key．

Setting example

This section explains how to change the the operation mode and position of the operation data No． 0 ．
－Operation mode：Changes from incremental to absolute．
－Position：Changes from 0 step to 10，000 steps．
1．Use the【 $\frac{\text { MODE }}{\text { ESC }} 】$ key to select the data mode． The＂DATA＂LED is lit．

2．Press the【SET】key on the top screen of the data mode． The display changes to the operation data No． 0 screen．

3．Press the【SET】key． The display changes to the operation mode screen．

4．Press the【SET】key again．
The present set value of the operation mode is displayed with blinking．

Top screen of the data mode

5．Press the【】】 key once to select＂1．＂

6．Press the【SET】key．
The blinking speed of the input value becomes quickly and the value is set．The display returns to the operation mode screen．

7．Press the【】】key．
The display changes to the position screen．

8．Press the【SET】key．
The present set value of the position is displayed with blinking．

9．Use the【ヘ】【】】〔】【】 keys to select＂10，000．＂
The selected digit is displayed with blinking．

10．Press the【SET】key．
The blinking speed of the input value becomes quickly and the value is set．The display returns to the position screen．

11．Press the【 $\frac{\text { MODE }}{\text { ESC }} 】$ key．
The display returns to the operation data No． 0 screen．

Initialization of the selected operation data

All of the set value for the selected operation data number can be reverted to the initial values．Perform＂clear data＂of the data mode．For the operation，check the screen transitions of the data mode on p．125．

Initialization of all operation data

All of the operation data saved in the driver can be reverted to the initial values．Perform＂Initialize operation data＂of the copy mode．For the operation，check the screen transitions of the copy mode on p．127．

3－8 Parameter mode

You can set parameters relating to motor operation and control．These parameters are saved in the non－volatile memory of the driver．

Note

Parameters have significant bearing on motor operation．Before setting any parameter，make sure you fully understand the content of the parameter．
memo－If operations are limited by the edit lock function or HMI input，parameters cannot be edited．
－If the value you have input is outside the setting range，＂Error＂will be displayed for 1 second．If this error display appears，input a different value that falls within the setting range．
－If［SET】 key is pressed while executing the internal processing via RS－485 communication，＂mEm－ bUSy＂may be displayed．Check the timing when＂mEm－bUSy＂is displayed on p．124．Be sure to wait until all internal processing is completed，before pressing the【SET】 key．
－If a nonexistent parameter ID is entered，＂id－Err＂will be displayed for 1 second．Check the ID and enter the correct one．
－Refer to p． 110 for the timing of updating a parameter．

Setting example

This section explains how to assign the TIM output to the OUT1 output．

1．Use the $\left[\frac{M O D E}{\text { ESC }} \rrbracket\right.$ key to select the parameter mode． The＂PAR＂LED is lit．

2．Press the【SET】 key on the top screen of the parameter mode．

3．Use the【ヘ】（ฟ】く】 \rightarrow 】 keys to enter［ID：2209］in the ＂OUT1 output function selection＂parameter．

4．Press the【SET】key．
The present set value of the＂OUT1 output function selection＂ parameter is displayed with blinking．

5．Use the【イ】 \downarrow 【 $\leftarrow 】 ~(\rightarrow$ 】 keys to enter＂72．＂
＂72＂indicates the TIM output．

6．Press the【SET】key．
The blinking speed of the input value becomes quickly and the value is set．
The display returns to the＂OUT1 output function selection＂ parameter screen．

Top screen of the parameter mode

Select parameter

＂OUT1 output function selection＂parameter

Present value（blinking）

Set the OUT1 output to＂ 72 ＂（blinking）

Confirm the value（quick blinking）

Return to the＂OUT1 output function selection＂parameter 1d 2209

Parameter list

There is an unique ID in each parameter. With the OPX-2A, set the parameter selecting the ID.

- Operation data

Operation data can also be set by selecting the data mode.

ID	Parameter name	Setting range	Initila value	Update
$\begin{gathered} 640 \\ \text { to } \\ 703 \end{gathered}$	Operation mode No. 0 to Operation mode No. 63	0 : Incremental 1: Absolute	0	B
$\begin{gathered} 512 \\ \text { to } \\ 575 \end{gathered}$	Position No. 0 to Position No. 63	$-8,388,608$ to $+8,388,607$ step	0	B
$\begin{gathered} 576 \\ \text { to } \\ 639 \end{gathered}$	Operating speed No. 0 to Operating speed No. 63	0 to 1,000,000 Hz	1,000	B
$\begin{gathered} 704 \\ \text { to } \\ 767 \end{gathered}$	```Operation function No.0 to Operation function No.63```	0: Single-motion 1: Linked-motion 2: Linked-motion 2 3: Push	0	B
$\begin{gathered} 960 \\ \text { to } \\ 1023 \end{gathered}$	Sequencial positioning No. 0 to Sequencial positioning No. 63	0 : Disable 1: Enable	0	B
$\begin{gathered} 768 \\ \text { to } \\ 831 \end{gathered}$	Acceleration No. 0 * to Acceleration No. 63 *	0.001 to $1,000.000 \mathrm{~ms} / \mathrm{kHz}$ or 0.001 to $1,000.000 \mathrm{~s}$	1.000	B
$\begin{gathered} 832 \\ \text { to } \\ 895 \end{gathered}$	```Deceleration No.0 * to Deceleration No.63 *```	0.001 to $1,000.000 \mathrm{~ms} / \mathrm{kHz}$ or 0.001 to $1,000.000 \mathrm{~s}$	1.000	B
$\begin{gathered} 896 \\ \text { to } \\ 959 \end{gathered}$	$\begin{aligned} & \text { Push current No. } 0 \\ & \text { to } \\ & \text { Push current No. } 63 \end{aligned}$	0.0 to 100.0 \%	20.0	B
$\begin{gathered} 1024 \\ \text { to } \\ 1087 \end{gathered}$	Dwell time No. 0 to Dwell time No. 63	0.000 to 50.000 s	0.000	B

* This item is effective when the "Acceleration/deceleration type" parameter is set to "Separate." If this parameter is set to "Common," the values of the "Common acceleration" and "Common deceleration" parameters will be used.

- Parameter

ID	Parameter name	Setting range	Initila value	Update
256	STOP input action	0: Immediate stop 1: Decelerate stop 2: Immediate stop \& Current OFF 3: Deceleration stop \& Current OFF	1	A
257	Hardware overtravel	0: Disable 1: Enable	1	A
258	Overtravel action	0: Immediate stop 1: Decelerate stop	0	A
259	END signal range	0.0 to 18.0°	1.8	A
260	Positioning complete output offset	-1.8 to 1.8°	0.0	A
261	AREA1 positive direction position	-8,388,608 to 8,388,607 step	0	A
262	AREA1 negative direction position			
263	AREA2 positive direction position			
264	AREA2 negative direction position			
265	AREA3 positive direction position			
266	AREA3 negative direction position			
267	Minimum ON time for MOVE output	0 to 255 ms	0	A
268	LS contact configuration	0: Make (N.O.) 1: Brake (N.C.)	0	C
269	HOMES logic level			C
270	SLIT logic level			C
288	RUN current	0.0 to 100.0 \%	100.0	A
289	STOP current	0.0 to 50.0 \%	50.0	A
290	Position loop gain	1 to 50	10	A
291	Speed loop gain	10 to 200	180	A
292	Speed loop integral time constant	10.0 to 200.0 ms	100.0	A
293	Speed filter	0 to 200 ms	1	B
294	Moving average time	1 to 200 ms	1	B
320	Common acceleration	0.001 to $1,000.000 \mathrm{~ms} / \mathrm{kHz}$ or 0.001 to $1,000.000 \mathrm{~s}$	1.000	B
321	Common deceleration			B
322	Starting speed	0 to $1,000,000 \mathrm{~Hz}$	500	B
323	JOG operating speed	1 to $1,000,000 \mathrm{~Hz}$	1,000	B
324	Acceleration/deceleration rate of JOG	0.001 to $1,000.000 \mathrm{~ms} / \mathrm{kHz}$ or 0.001 to $1,000.000$ s	1.000	B
325	JOG starting speed	0 to 1,000,000 Hz	500	B
326	Acceleration/deceleration type	0 : Common 1:Separate	1	B
327	Acceleration/deceleration unit	$\begin{aligned} & \text { 0: ms/kHz } \\ & 1: \mathrm{s} \end{aligned}$	0	C
352	Home-seeking mode	0: 2-sensor mode 1:3-sensor mode 2: Push mode	1	B
353	Operating speed of home-seeking	1 to 1,000,000 Hz	1,000	B
354	Acceleration/deceleration of home-seeking	0.001 to $1,000.000 \mathrm{~ms} / \mathrm{kHz}$ or 0.001 to $1,000.000 \mathrm{~s}$	1.000	B
355	Starting speed of home-seeking	1 to 1,000,000 Hz	500	B
356	Position offset of home-seeking	$-8,388,608$ to 8,388,607 step	0	B
357	Starting direction of home-seeking	0 : Negative direction 1: Positive direction	1	B

ID	Parameter name	Setting range	Initila value	Update
358	SLIT detection with home-seeking	0 : Disable 1: Enable	0	B
359	TIM signal detection with homeseeking			B
360	Operating current of home-seeking with push-motion	0.0 to 100.0 \%	100.0	B
384	Overload alarm	0.1 to 30.0 s	5.0	A
385	Excessive position deviation alarm at current ON	0.01 to 300.00 rev	3.00	A
388	Return-to-home incomplete alarm	0: Disable 1: Enable	0	C
416	Overheat warning	40 to $85^{\circ} \mathrm{C}$	85	A
417	Overload warning	0.1 to 30.0 s	5.0	A
418	Overspeed warning	1 to 5,000 r/min	4,500	A
419	Overvoltage warning	AC power input: 120 to 450 V DC power input: 15.0 to 63.0 V	AC power input: 435 DC power input: 63.0	A
420	Undervoltage warning	AC power input: 120 to 280 V DC power input: 15.0 to 63.0 V	AC power input: 120 DC power input: 18.0	A
421	Excessive position deviation warning at current ON	0.01 to 300.00 rev	3.00	A
448	Electronic gear A	1 to 65,535	1	C
449	Electronic gear B			
450	Motor rotation direction	0 : Positive direction=CCW 1: Positive direction=CW	1	C
451	Software overtravel	0 : Disabel 1: Enable	1	A
452	Positive software limit	$-8,388,608$ to 8,388,607 step	8,388,607	A
453	Negative software limit		-8,388,608	A
454	Preset position		0	A
455	Wrap setting	0: Disable 1: Enable	0	C
456	Wrap setting range	1 to $8,388,607$ step	1,000	C
480	Data setter speed display	0 : Signed 1: Absolute value	0	A
2048	MS0 operation No. selection	0 to 63	0	B
2049	MS1 operation No. selection		1	
2050	MS2 operation No. selection		2	
2051	MS3 operation No. selection		3	
2052	MS4 operation No. selection		4	
2053	MS5 operation No. selection		5	
2054	HOME-P output function selection	0 : Home output 1: Return-to-home complete output	0	A
2064	Filter selection	0 : Speed filter 1: Moving average filter	0	C
2065	Speed difference gain 1	0 to 500	45	A
2066	Speed difference gain 2			
2067	Control mode	0 : Normal mode 1: Current control mode	0	C
2068	Smooth drive	0: Disable 1: Enable	1	C
2080	Automatic return operation	0 : Disable 1: Enable	0	C

ID	Parameter name	Setting range	Initila value	Update
2081	Operation speed of automatic return	1 to 1,000,000 Hz	1,000	B
2082	Acceleration (deceleration) of automatic return	0.001 to $1,000.000 \mathrm{~ms} / \mathrm{kHz}$ or 0.001 to $1,000.000 \mathrm{~s}$	1.000	B
2083	Starting speed of automatic return	0 to 1,000,000 Hz	500	B
2084	JOG travel amount	1 to 8,388,607 step	1	B
2112	Excessive position deviation alarm at current OFF	0.01 to 300.00 rev	100.00	A
2176	IN0 input function selection	Refer to "IN input function selection" on p.138.	3: HOME	C
2177	IN1 input function selection		4: START	
2178	IN2 input function selection		48: M0	
2179	IN3 input function selection		49: M1	
2180	IN4 input function selection		50: M2	
2181	IN5 input function selection		16: FREE	
2182	IN6 input function selection		18: STOP	
2183	IN7 input function selection		24: ALM-RST	
2192	IN0 input logic level setting	0: Make (N.O.) 1: Brake (N.C.)	0	C
2193	IN1 input logic level setting			
2194	IN2 input logic level setting			
2195	IN3 input logic level setting			
2196	IN4 input logic level setting			
2197	IN5 input logic level setting			
2198	IN6 input logic level setting			
2199	IN7 input logic level setting			
2208	OUTO output function selection	Refer to "OUT output function selection" on p. 138 .	70: HOME-P	C
2209	OUT1 output function selection		69: END	
2210	OUT2 output function selection		73: AREA1	
2211	OUT3 output function selection		67: READY	
2212	OUT4 output function selection		66: WNG	
2213	OUT5 output function selection		65: ALM	
2224	NET-IN0 input function selection	Refer to "NET-IN input function selection" on p.138.	48: M0	C
2225	NET-IN1 input function selection		49: M1	
2226	NET-IN2 input function selection		50: M2	
2227	NET-IN3 input function selection		4: START	
2228	NET-IN4 input function selection		3: HOME	
2229	NET-IN5 input function selection		18: STOP	
2230	NET-IN6 input function selection		16: FREE	
2231	NET-IN7 input function selection		0 : No function	
2232	NET-IN8 input function selection		8: MS0	
2233	NET-IN9 input function selection		9: MS1	
2234	NET-IN10 input function selection		10: MS2	
2235	NET-IN11 input function selection		5: SSTART	
2236	NET-IN12 input function selection		6: +JOG	
2237	NET-IN13 input function selection		7:-JOG	
2238	NET-IN14 input function selection		1: FWD	
2239	NET-IN15 input function selection		2: RVS	
2240	NET-OUTO output function selection	Refer to "NET-OUT output function selection" on p. 138.	48: M0_R	C

ID	Parameter name	Setting range	Initila value	Update
2241	NET-OUT1 output function selection	Refer to "NET-OUT output function selection" on p. 138.	49: M1_R	C
2242	NET-OUT2 output function selection		50: M2_R	
2243	NET-OUT3 output function selection		4: START_R	
2244	NET-OUT4 output function selection		70: HOME-P	
2245	NET-OUT5 output function selection		67: READY	
2246	NET-OUT6 output function selection		66: WNG	
2247	NET-OUT7 output function selection		65: ALM	
2248	NET-OUT8 output function selection		80: S-BSY	
2249	NET-OUT9 output function selection		73: AREA1	
2250	NET-OUT10 output function selection		74: AREA2	
2251	NET-OUT11 output function selection		75: AREA3	
2252	NET-OUT12 output function selection		72: TIM	
2253	NET-OUT13 output function selection		68: MOVE	
2254	NET-OUT14 output function selection		69: END	
2255	NET-OUT15 output function selection		71:TLC	
2304	Communication timeout	0: Not monitored 1 to $10,000 \mathrm{~ms}$	0	A
2305	Communication error alarm	1 to 10 times	3	A
2563	Communication parity	$\begin{aligned} & \text { 0: None } \\ & \text { 1: Even } \\ & \text { 2: Odd } \end{aligned}$	1	C
2564	Communication stop bit	$\begin{aligned} & 0: 1 \text { bit } \\ & \text { 1:2 bits } \end{aligned}$	0	C
2565	Transmission waiting time	0.0 to $1,000.0 \mathrm{~ms}$	10.0	C

- Setting range for function selection parameters

IN input function selection

0: No function	8: MS0	18: STOP	35: R3	43: R11	51: M3
1: FWD	9: MS1	24: ALM-RST	36: R4	44: R12	52: M4
2: RVS	10: MS2	25: P-PRESET	37: R5	45: R13	53: M5
3: HOME	11: MS3	26: P-CLR*	38: R6	46: R14	
4: START	12: MS4	27: HMI	39: R7	47: R15	
5: SSTART	13: MS5	32: R0	40: R8	48: M0	
6: +JOG	16: FREE	33: R1	41: R9	49: M1	
7: -JOG	17: C-ON	34: R2	42: R10	50: M2	

* It cannot be used.

OUT output function selection

0 : No function	10: MS2_R	35: R3	45: R13	61: -LS_R	72: TIM
1:FWD_R	11: MS3_R	36: R4	46: R14	62: HOMES_R	73: AREA1
2: RVS_R	12: MS4_R	37: R5	47: R15	63: SLIT_R	74: AREA2
3: HOME_R	13: MS5_R	38: R6	48: MO_R	65: ALM	75: AREA3
4: START_R	16: FREE_R	39: R7	49: M1_R	66: WNG	80: S-BSY
5: SSTART_R	17: C-ON_R	40: R8	50: M2_R	67: READY	82: MPS *
6: +JOG_R	18: STOP_R	41: R9	51: M3_R	68: MOVE	
7: -JOG_R	32: R0	42: R10	52: M4_R	69: END	
8: MSO_R	33: R1	43: R11	53: M5_R	70: HOME-P	
9: MS1_R	34: R2	44: R12	60: +LS_R	71:TLC	

* AC power input only.

NET-IN input function selection

0 : No function	8: MSO	18: STOP	35: R3	43: R11	51: M3
1: FWD	9: MS1	24: ALM-RST	36: R4	44: R12	52: M4
2: RVS	10: MS2	25: P-PRESET	37: R5	45: R13	53: M5
3: HOME	11: MS3	26: P-CLR *	38: R6	46: R14	
4: START	12: MS4	27: HMI	39: R7	47: R15	
5: SSTART	13: MS5	32: R0	40: R8	48: M0	
6: +JOG	16: FREE	33: R1	41: R9	49: M1	
7: -JOG	17: C-ON	34: R2	42: R10	50: M2	

* It cannot be used.

NET-OUT output function selection

0 : No function	10: MS2_R	35: R3	45: R13	61: -LS_R	72: TIM
1:FWD_R	11:MS3_R	36: R4	46: R14	62: HOMES_R	73: AREA1
2: RVS_R	12: MS4_R	37: R5	47: R15	63: SLIT_R	74: AREA2
3: HOME_R	13: MS5_R	38: R6	48: M0_R	65: ALM	75: AREA3
4: START_R	16: FREE_R	39: R7	49: M1_R	66: WNG	80: S-BSY
5: SSTART_R	17: C-ON_R	40: R8	50: M2_R	67: READY	82: MPS *
6: +JOG_R	18: STOP_R	41: R9	51:M3_R	68: MOVE	
7: -JOG_R	32: R0	42: R10	52: M4_R	69: END	
8: MSO_R	33: R1	43: R11	53: M5_R	70: HOME-P	
9: MS1_R	34: R2	44: R12	60: +LS_R	71:TLC	

* $A C$ power input only.

3－9 Test mode

■ Overview of the test mode

－Direct I／O test
You can check the ON／OFF status of each input signal of the driver．You can also switch the ON／OFF status of each output signal on the OPX－2A．When checking the connection condition of the driver，perform the direct I／O test．
－JOG operation
You can operate the motor using the keys on the OPX－2A．
－Data select operation
You can perform the positioning operation．
－Return－to－home operation
You can perform the return－to－home operation．
－Position preset
You can set the preset value as the command position．
－Teaching
You can operate the motor using the keys on the OPX－2A and update the attained position in the operation data．
memo－Stop the motor operation before changing to the test mode．
－When you move from the top screen of the test mode to a lower level，the following inputs will be disabled． START，SSTART，HOME，\pm JOG，FWD，RVS and MSO to MS5．
－In the direct I／O test，if the screen moves to the lower level，all of I／O signals and operation will be disabled．
－If the【SET】key is pressed while executing the internal processing via RS－485 communication， ＂mEm－bUSy＂may be displayed．Check the timing when＂mEm－bUSy＂is displayed on p．124．Be sure to wait until all internal processing is completed，before pressing the【SET】 key．
－If＂Error＂is displayed when data select operation，return－to－home operation，position preset or teaching function is performed，check whether an alarm generates．
－When the HMI input is OFF，test mode cannot be executed．
－What happens when the【SET】 key is pressed while the motor is operating
While the motor is operating，you cannot move to any lower level from the top screen of aPE－Err the test mode．Pressing the【SET】key will generate an error，and＂oPE－Err＂will be shown． Be sure to stop the motor operation before pressing the【SET】key．

－Direct I／O test

When checking the connection condition of the driver，perform the direct I／O test．
Each digit on the 7 －segment LED display corresponds to a signal．The LED is lit when the input signal is ON，and it is unlit when the input signal is OFF．
Use the【イ】】】 keys to switch the ON－OFF state of the output signal．＂ם＂is displayed when the signal is ON，while ＂－＂is displayed when the signal is OFF．

－Input signals

－Output signals

Output signals test

Use $E \rightarrow$ to navigate through the digits．
Use $\uparrow \downarrow$ to switch the ON／OFF status．
－indicates the ON status．
indicates the OFF status．

■ JOG operation

You can operate the motor using the keys on the OPX－2A．
Pressing the【个】key once causes the motor to rotate one step in the positive direction．Pressing and holding the key causes the motor to rotate continuously in the positive direction．
Pressing the $\llbracket \downarrow$ key once causes the motor to rotate one step in the negative direction．Pressing and holding the key causes the motor to rotate continuously in the negative direction．
The operating speed corresponds to the value set in the＂JOG operating speed＂parameter． Take note that when the value set in the＂JOG starting speed＂parameter is greater than the value set in the＂JOG operating speed＂parameter，the JOG starting speed will become effective．

Note During operation，the motor rotates at the specified operating speed while each applicable key is pressed．Before commencing the operation，consider the status of the equipment and condition of its surroundings to confirm thoroughly that motor rotation will not cause any dangerous situations．

Data select operation

Select a desired operation data number and then press the【SET】key，and positioning operation will be performed．
Note During operation，the motor rotates at the specified operating speed．Before commencing the operation，consider the status of the equipment and condition of its surroundings to confirm thoroughly that motor rotation will not cause any dangerous situations．

Return－to－home operation

You can perform a return－to－home operation．The operating speed corresponds to the value set in the＂Operating speed of home－seeking＂parameter．

Note During operation，the motor rotates at the specified operating speed．Before commencing the operation，consider the status of the equipment and condition of its surroundings to confirm thoroughly that motor rotation will not cause any dangerous situations．

Presetting the position

In this operation，the command position is preset by rewriting the value in the＂Preset position＂parameter．
memo If operations are limited by the edit lock function，the preset cannot be performed．

Teaching

You can operate the motor using the keys on the OPX－2A and update the attained position in the operation data． The absolute mode will be automatically selected as the operation mode of any position data set by teaching． The operating speed，acceleration／deceleration rate and starting speed of teaching are the same as the corresponding settings applicable to JOG operation．

Note During operation，the motor rotates at the specified operating speed．Before commencing the operation，consider the status of the equipment and condition of its surroundings to confirm thoroughly that motor rotation will not cause any dangerous situations．
memo If operations are limited by the edit lock function，the teaching cannot be performed．

3－10 Copy mode

Overview of the copy mode

－Download
Data saved in the OPX－2A can be copied to the driver．If a download error occurs，a code indicating the description of the error will blink on the display．Download will not be performed and the display will return to the top screen of download．Refer to the following＂Error of the copy mode＂ to display the error．
－Upload
Data saved in the driver can be copied to the OPX－2A．

－Verification
Data in the OPX－2A can be verified against the corresponding data in the driver．
If the verification finds that the two sets of data match，＂Good＂will be shown．If the two do not match，＂Error＂will be shown．
If a verification error occurs，a code indicating the description of the error will blink on the display．Verification will not be performed and the display will return to the top screen of verification．Refer to the following＂Error of the copy mode＂to display the error．
－Initializing data
Data saved in the driver can be restored to the initial values．
－What happens when the［SET］key is pressed while the edit lock function is enabled
While the edit lock function is enabled，you cannot move to any lower level from the top screen of the copy mode．Pressing the【SET】key will generate an error，and ＂Lock－Err＂will be shown．Be sure to cancel the edit lock function before pressing the【SET】key．Refer to p． 121 for the procedure to cancel the edit lock function．

Error of the copy mode

If an error occurs in download or verification，the error code will blink on the display． At this time，the processing will not be executed and the display will return to the top screen．

Blinking display	Description	Action
Prad－Err	There is a discrepancy between the selected product series and the data being processed．	－Check the product series． －Check the data bank number on the OPX－ 2A．
HERd－Err	An error occurred while processing．	Execute the processing again．If the same error occurs，the data saved in the OPX－2A may have damaged．Upload and set the data of the OPX－2A again．
$b c r-E r r$		
пロ－dRLR	The specified data bank number does not contain data．	Check the data bank number．

Note Do not turn off the driver power supply while processing is in progress（＝while the display is blinking）．Doing so may damage the data．
memo When a parameter that the power supply is required to turn on again for updating was changed by downloading，turn on the DC power supply of the driver again．

4 Inspection and maintenance

4-1 Inspection

It is recommended that periodic inspections be conducted for the items listed below after each operation of the motor. If an abnormal condition is noted, discontinue any use and contact your nearest Oriental Motor sales office.

- Inspection item

- Check if any of the screws having installed the motor is loose.
- Check if an unusual noise is generated from a bearing part (ball bearings) of the motor.
- Check if a damage or stress is applied on the cable.
- Check if the connection part between the cable and driver is loose.
- Check if the output shaft and the load shaft are out of alignment.
- Check if the openings in the driver clogged.
- Check if the installation place of the driver is loose.
- Check if any attachment of dust, etc., on the driver.
- Check if any strange smells or appearances within the driver.

The driver uses semiconductor components. Handle the driver with care since static electricity may damage semiconductor components.

4-2 Warranty

Check on the Oriental Motor Website for the product warranty.

4-3 Disposal

Dispose the product correctly in accordance with laws and regulations, or instructions of local governments.

5 Alarms and warnings

The driver provides alarms that are designed to protect the driver from overheating, poor connection, error in operation, etc. (protective functions), as well as warnings that are output before the corresponding alarms generate (warning functions).

5-1 Alarms

When an alarm generates, the ALM output will turn OFF and the motor will stop. At the same time, the ALM LED (or ALARM LED) will start blinking.
The present alarm can be checked by counting the number of times the LED blinks, or using the MEXE02, OPX-2A or via RS-485 communication.

Example: Hardware overtravel alarm [number of times the ALM LED (or ALARM LED) blinks: 7]

Alarm reset

Perform one of the reset operations specified below. Before resetting an alarm, always remove the cause of the alarm and ensure safety. Refer to p .323 for the timing chart.

- Turn the ALM-RST input from ON to OFF. (The alarm will be reset at the OFF edge of the input.)
- Perform the alarm reset via RS-485 communication.
- Perform the alarm reset using the MEXE02 or OPX-2A.
- Cycle the power.

Alarm records

Up to 10 generated alarms are saved in the non-volatile memory in order of the latest to oldest. Alarm records saved in the non-volatile memory can be read and cleared when performing any of the following.

- Read the alarm records by the monitor command via RS-485 communication.
- Clear the alarm records by the maintenance command via RS-485 communication.
- Read and clear the alarm records using the MEXE02 or OPX-2A.

Alarm list

| Code | Number of times
 the ALARM LED
 blinks | | Alarm type |
| :---: | :--- | :--- | :--- | Cause | Excessive position deviation |
| :--- |

Remedial action	Alarm reset	Motor excitation *1
- Reduce the load or increase the acceleration/deceleration. - Increase the setting value for the "RUN current" parameter. - Turn off the power supply and check the connection between the motor cable and the driver before turning on the power supply again.	- Turn the ALM-RST input from ON (1) to OFF (0). - Perform alarm reset.	Non-excitation
- Do not turn the C-ON input ON while an excessive position deviation warning at current OFF is present. - Set the "Automatic return operation" prameter to "disable."		Non-excitation
Turn off the power supply, and check that the motor, cable and driver output circuit are not short-circuited before turning on the power again.	Cycle the power.	Non-excitation
Review the ventilation condition inside the enclosure.	- Turn the ALM-RST input from ON (1) to OFF (0). - Perform alarm reset.	Non-excitation
- Check the input voltage of the power supply. - If this alarm generates during operation, reduce the load or increase the acceleration/deceleration.	- Cycle the power. - Perform alarm reset (DC power input only).	Non-excitation
Check if the main power supply has been input normally.	- Turn the ALM-RST input from ON (1) to OFF (0). - Perform alarm reset.	Non-excitation
Check the input voltage of the main power supply.		Non-excitation
Turn off the power, and turn on the power again after checking the connection for the motor cable and driver.	Cycle the power.	Non-excitation
Turn on the power again. Then check that no alarm is generated and be sure to perform return-to-home operation.		Non-excitation
- Reduce the load or increase the acceleration/deceleration. - Increase the setting value for the "RUN current" parameter. - Check the connection of the driver and electromagnetic brake. - Turn off the power supply and check the connection between the motor cable and the driver before turning on the power supply again.	- Turn the ALM-RST input from ON (1) to OFF (0). - Perform alarm reset.	Non-excitation
- Check the "Electronic gear" parameter and set the speed of the motor output shaft to $4,500 \mathrm{r} / \mathrm{min}$ or less. - If the motor is overshooting at the time of acceleration, increase the acceleration.		Non-excitation
Check the "Electronic gear" parameter and reduce the speed of the motor output shaft to $4,500 \mathrm{r} / \mathrm{min}$ or less.	- Turn the ALM-RST input from ON (1) to OFF (0). - Perform alarm reset.	Non-excitation
Initialize the all parameters.	Cycle the power.	Non-excitation
Turn off the power supply, and check the connection of the motor cable and driver before turning on the power again.		Non-excitation
Review the load and make sure the output shaft does not turn by an external force when the power is turned on.		Non-excitation
Check the model name of motor and driver, and use the motor and driver in the correct combination.		Non-excitation
Perform the position preset or return-to-home operation.	- Turn the ALM-RST input from ON (1) to OFF (0). - Perform alarm reset.	Excitation

Code	Number of times the ALARM LED blinks	Alarm type	Cause

Remedial action	Alarm reset	Motor excitation *1
Turn off the power supply, and check the following items before turning on the power again. When the regeneration resistor is not used, short-circuit the TH1 and TH2 terminals on the CN1. Connect the regeneration resistor correctly. Regenerative power from the motor exceeds the allowable regenerative power of the regeneration resistor. Make sure the load and operating condition.	Cycle the power.	Non-excitation
After resetting the alarm, check the sensor logic installed and "LS contact configuration" parameter.	- Turn the ALM-RST input from ON (1) to OFF (0). - Perform alarm reset.	Excitation
After resetting the alarm, check the wiring of the limit sensor.		Excitation
An unanticipated load may have been applied during the return-to-home operation. Check the load. If the installation positions of limit sensor and mechanical home sensor are close to one another, the return-to-home sequence may not end properly, depending on the starting direction of return-to-home operation. Review the sensor installation positions and the starting direction of return-to-home operation. Return-to-home operation may have been performed in a condition where both +LS input and -LS input were detected. Check the sensor logic and "LS contact configuration" parameter.		Excitation
Set a mechanical home sensor between positive direction and negative direction limit sensors.		Excitation
- Adjust the connection condition of the output shaft and load as well as the mechanical home sensor position so that at least one of the SLIT input or TIM output will turn ON while HOMES input is ON . - Set the "SLIT detection with home-seeking" parameter to "Disable" if the SLIT input are not used with HOMES, while set the "TIM signal detection with home-seeking" parameter to "Disable" if the TIM output are not used with HOMES.		Excitation
After resetting the alarm, escape from the limit sensor by continuous operation or by return-to-home operation.		Excitation
In single-motion operation, check to see if the position exceeds the softlimit. In linked-motion operation, check to see if the result of linked position exceeds the softlimit.		Excitation
After resetting the alarm, check the offset value.	- Turn the ALM-RST input from ON (1) to OFF (0). - Perform alarm reset.	Excitation
After resetting the alarm, check the operation data.		Excitation
Turn off the power supply, and set the "Electronic gear" parameter correctly so that the resolution is in a range of 100 to 10,000 P/R before turning on the power again.	Cycle the power.	Non-excitation
Turn off the power supply, and set the "Wrap setting range" parameter correctly before turning on the power again.		Non-excitation

Code	Number of times the ALARM LED blinks	Alarm type	Cause
81h	7	Network bus error	When the motor operates, the host controller for the network converter shows a disconnected status.
83h		Communication switch setting error	Transmission rate setting switch (SW2) was out-ofspecification.
84h		RS-485 communication error	The number of consecutive RS-485 communication errors reached the "Communication error alarm" parameter.
85h		RS-485 communication timeout	The time set in the "Communication timeout" parameter has elapsed, and yet the communication could not be established with the host controller.
8Eh		Network converter error	The network converter generated an alarm.
FOh	Lit	CPU error	CPU malfunctioned.

*1 An excitation state of the motor when an alarm is generated is as follows.
Non-excitation: When an alarm generates, the motor current will be cut off and the motor will lose its holding torque.
The electromagnetic brake will automatically actuate and hold the position when using the electromagnetic brake motor.
Excitation: Even when an alarm generates, the motor current will not be cut off and the motor position will be held.
*2 AC power input only.
If the alarm is not cleared even when these remedial actions have been performed, the driver may have been damaged. Contact your nearest Oriental Motor sales office.

Remedial action	Alarm reset	Motor excitation ${ }^{*} ⿴$
Check the host controller connector or cable.	\bullet Turn the ALM-RST input from ON (1) to OFF (0). \bullet Perform alarm reset.	Excitation
Check the transmission rate setting switch (SW2).	Cycle the power.	Non-excitation
\bullet Check the connection between the host controller and driver. \bullet Check the setting of RS-485 communication.	•Turn the ALM-RST input from ON (1) to OFF (0). \bullet Perform alarm reset.	Excitation
Check the connection between the host controller and driver.	Excitation	
Check the alarm code of the network converter.	Cycle the power.	Excitation
Cycle the power.		Non-excitation

5-2 Warning

When a warning generates, the WNG output will turn ON. The motor will continue to operate.
Once the cause of the warning is removed, the WNG output will turn OFF automatically.

Warning records

Up to 10 generated warnings are saved in the RAM in order of the latest to oldest.
Warning records saved in the RAM can be read and cleared when performing any of the following.

- Read the warning records by the monitor command via RS-485 communication.
- Clear the warning records by the maintenance command via RS-485 communication.
- Read and clear the warning records using the MEXE02 or OPX-2A.
memo You can also clear the warning records by turning off the driver power supply.

Warning list

Code	Warning type	Cause	Remedial action
10h	Excessive position deviation	- When the motor was in a state of current ON, the deviation between the command position and actual position at the motor output shaft exceeded the value set in the "Excessive position deviation warning at current ON" parameter. - The load is large or acceleration/deceleration is too short.	- Reduce the load or increase the acceleration/deceleration. - Increase the setting value for the "RUN current" parameter.
12h	Excessive position deviation during current OFF	When the motor was in a state of current OFF, the deviation between the command position and actual position at the motor output shaft exceeded the value set in the "Excessive position deviation alarm at current OFF" parameter. (This warning is output when the "Auto return operation" parameter is set to "Enable.")	Reduce the amount of rotation at current OFF to the specified setting value or less. Or, change the setting value.
21h	Main circuit overheat	The internal temperature of the driver exceeded the value set in the "Overheat warning" parameter.	Review the ventilation condition inside the enclosure.
22h	Overvoltage	- The voltage of the power supply exceeded the value set in the "Overvoltage warning" parameter. - A large inertia load was stopped abruptly or vertical operation was performed.	- Check the input voltage of the power supply. - If this alarm generates during operation, reduce the load or increase the acceleration/deceleration.
25h	Undervoltage	- The voltage of the power supply fell below the value set in the "Undervoltage warning" parameter. - The main power was cut off momentarily or the voltage became low.	Check the input voltage of the power supply.
30h	Overload	- A load exceeding the peak torque was applied for the time set in the "Overload warning" parameter or longer. - The load is large or acceleration/deceleration is too short.	- Reduce the load or increase the acceleration/deceleration. - Increase the setting value for the "RUN current" parameter. - Check if the electromagnetic brake is released during operation.
31h	Overspeed	The actual speed of the motor output shaft exceeded the value set in the "Overspeed warning" parameter.	- Check the "Electronic gear" parameter and reduce the speed of the motor output shaft to the value set in the parameter or less. - If an overshoot is occurred at the time of accelerating, increase the acceleration/ deceleration.

Code	Warning type	Cause	Remedial action
71 h	Electronic gear setting error	The resolution set in the "Electronic gear" parameter is outside the specified range.	Turn off the power supply, and set the "Electronic gear" parameter correctly so that the resolution is in a range of 100 to 10,000 P/R before turning on the power again.
72 h	Wrap setting error	The resolution and "Wrap setting range" parameter was inconsistent.	Turn off the power supply, and set the "Wrap setting range" parameter correctly before turning on the power again.
84 h	RS-485 communication error	A RS-485 communication error was detected.	• Check the connection between the host controller and driver. •Check the setting of RS-485 communication.

5-3 Communication errors

Up to 10 communication errors are saved in the RAM in order of the latest to the oldest and you can check using the MEXE02 or via RS-485 communication.

Communication error records

Up to 10 communication errors are saved in the RAM in order of the latest to oldest. Communication error records saved in the RAM can be read and cleared when performing any of the following.

- Read the communication error records by the monitor command via RS-485 communication.
- Clear the communication error records by the maintenance command via RS-485 communication.
- Read and clear the communication error records by the status monitor of the MEXE02.
memo
You can also clear the communication records by turning off the driver power supply.

Communication error list

Code	Communication error type	Cause	Remedial action
84h	RS-485 communication error	One of the following errors was detected. - Framing error - BCC error	- Check the connection between the host controller and driver. - Check the setting of RS-485 communication.
88h	Command not yet defined	The command requested by the host controller could not be executed because of being undefined.	- Check the setting value for the command. - Check the flame configuration.
89h	Execution disable due to user I/F communication in progress	The command requested by the host controller could not be executed since the MEXE02 or OPX-2A was communicating with the driver.	Wait until the processing for the MEXEO2 or OPX-2A will be completed.
8Ah	Not possible to execute because of non-volatile memory processing	The command could not be executed because the driver was processing the non-volatile memory. - Internal processing was in progress. (S-BSY is ON.) - An EEPROM error alarm was present.	- Wait until the internal processing will complete. - When the EEPROM error alarm was generated, initialize the parameter using the MEXE02, OPX-2A or via RS-485 communication.
8Ch	Outside setting range	The setting data requested by the host controller could not be executed due to outside the range.	Check the setting data.
8Dh	Command execute disable	When the command could not be executed, it tried to do it.	Check the driver status.

6 Troubleshooting and remedial actions

During motor operation, the motor or driver may fail to function properly due to an improper setting or wiring. When the motor cannot be operated correctly, refer to the contents provided in this chapter and take appropriate action. If the problem persists, contact your nearest Oriental Motor sales office.

Phenomenon	Possible cause	Remedial action		
- The motor is not excited. - The output shaft can be moved by hand.	The C-ON input is turned OFF.	Turn the C-ON input ON and confirm that the motor will be excited.		
The motor has a holding torque even if it is put into a non-excitation state. *	Effect of dynamic brake.	Turn the FREE input OFF.		
	If the motor is put into a non-excitation state using the C-ON input or the STOP input, the motor windings is in a state of being short-circuited in the driver, and the holding torque larger than when the power is shut off is generated (dynamic brake). To release the dynamic brake, shut off the power or turn the FREE input ON.			
	An electromagnetic brake motor is used and the electromagnetic brake is in the holding state.	Check the connections between electromagnetic brake and driver.		
	The STOP input is turned ON.	Turn the STOP input OFF.		
The motor does not operate.	The position (distance) is not set in the operation data while positioning operation.	Check the operation data.		
The FWD input and RVS input				
are turned ON simultaneously				
in the continuous operation.			\quad	Turn either FWD input or RVS input ON.
:---				

* DC power input only.
memo - Check the alarm when the alarm generates.
- I/O signals can be monitored using the MEXE02, OPX-2A or via RS-485 communication. Use to check the wiring condition of the I/O signals.

5 Operation type and setting

This part explains the details of operation and how to set the driver function.

Table of contents

1 Guidance .. 154
2 Adjustment and setting 158
2-1 Resolution .. 158
2-2 Operating current..................................... 159
2-3 Standstill current.. 159
2-4 Acceleration/deceleration rate and $\begin{aligned} & \text { acceleration/deceleration time } 160\end{aligned}$
2-5 Smooth drive... 160
2-6 Speed filter... 161
2-7 Moving average filter 162
2-8 Speed error gain.. 162
2-9 Control mode.. 163
2-10 Position loop gain, speed loop gain,
speed loop integral time constant 163
3 Operation type and function list 164
4 Positioning operation.......................... 165
4-1 Operation data ... 165

4-3 Operation function 172
4-4 Push-motion operation........................... 176
5 Return-to-home operation 179
5-1 Operation sequence 182
5-2 Position preset 187
6 Continuous operation 188
6-1 Starting method of continuous operation 189
6-2 Variable speed operation 191
7 Other operation 193
7-1 JOG operation 193
7-2 Test operation 194
7-3 Automatic return operation 195
7-4 Stop operation 196
8 Coordination management 198
8-1 Position coordinate management. 198
8-2 Wrap function 198

1 Guidance

If you are new to the $\mathbf{A R}$ Series built-in controller type, read this section to understand the operating methods along with the operation flow.
This section explains an example to perform positioning operation using the MEXE02.

STEP 1	Make preparations for operation
\downarrow STEP $\mathbf{2}$ Set the operation data using the MEXEO2 \downarrow STEP 3 Operate the motor	

Checking the factory setting

Setting item	Factory setting
Resolution	$1,000 \mathrm{P} / \mathrm{R}\left(0.36^{\circ} /\right.$ step)
Operating current	$1,000$ (Base current rate $100 \%)$
Speed filter	1 ms
Home	Motor position at power on

Note Before operating the motor, check the condition of the surrounding area to ensure safety.

STEP 1 Make preparations for operation

1. Wire the driver by reference to the figure.

- AC power input

Be sure to connect a 24 VDC power supply.

* These cables are provided as our products. Purchase them separately.
- DC power input

*1 This cable is provided as our product. When the length of the motor cable is not enough, purchase it separately.
*2 This cable is provided as our product. Purchase it separately.

2. Start the MEXEO2, and turn on the driver main power supply.

Refer to the Support software MEXEO2 OPERATING MANUAL for how to start or use the MEXE02.

STEP 2 Set the operation data using the MEXE02

1. Using the MEXEO2, set the operation data of No. 1 as follows.

	Operation mode	Position [step]	Operating speed [Hz]	Operation function	Push current [\%]	Dwell time [s]	Sequential positioning	Acceleration [ms/kHz] or [s]	Deceleration [ms/kHz] or [s]
\#0	Incremental (INC)	0	1000	Sinale-motion	20.0	0.000	Disable	1.000	1.000
\#1	Incremental (INC)	8500	2000	Single-motion	20.0	0.000	Disable	1.500	1.500

2. Click the [Teaching, remote operation] short-cut button in the left side of the screen. The teaching, remote operation window appears.

3. Click "Start the teaching remote operation," and click [Yes] on the pop-up window (Warning).

4. Write the edited data to the driver.

Click "Writing all data. (PC -> Product)," and click [OK].
The contents of the data No. 1 will be written to the driver.

5. Select the operation data No.1.

STEP 3 Operate the motor

1. Click [Start positioning operation].

Since the pop-up window (Warning) is displayed, click [Yes].
The motor performs positioning operation.

2. Check that the command position and actual position have changed to 8,500. If they are 8,500, positioning operation is performed properly.

3. To end the teaching, remote operation, unselect "Start the teaching remote operation."

Positioning operation has been completed.

2 Adjustment and setting

This chapter explains how to adjust/set the motor and driver functions. When a parameter is changed, the timing to update the new value varies depending on the parameter. Refer p. 110 for details.

2-1 Resolution

Set a resolution when using in combination with a mechanism product such as a geared motor or an actuator.When the "Electronic gear A" and "Electronic gear B" parameters are set, the resolution per one rotation of the motor output shaft can be set. Note that the calculated value must fall within the setting range specified next: Resolution setting range: 100 to $10,000 \mathrm{P} / \mathrm{R}$
Resolution $=1,000 \times \frac{\text { Electronic gear } B}{\text { Electronic gear } A}$

Related parameter

MEXE02 tree view	Parameter name	Description	Initial value
Coordinates	Electronic gear A	Sets the denominator of electric gear. [Setting range] 1 to 65,535	1
	Electronic gear B	Sets the numerator of electric gear. [Setting range] 1 to 65,535	1

memo - If the value outside of the setting range is set, the "electronic gear setting error warning" will generate. If the power is cycled or the configuration is executed while the "electronic gear setting error warning" is present, an "electronic gear setting error alarm" will generate.

- When the TIM output is used, set the "Electronic gear" parameters to be an integral multiple of 50 .

■ Calculation of electronic gear A and B
Calculation of electronic gear A and B is explained with examples of a ball screw and rotary table.

- Example: Ball screw
$\begin{array}{ll}\text { Ball screw lead } & : 12 \mathrm{~mm} \\ \text { Minimum travel amount } & : 0.01 \mathrm{~mm} \\ \text { Gear ratio } & : 1 \text { (No speed reduction mechanism between the motor and ball screw) }\end{array}$
Resolution $=1,000 \times \frac{\text { Electronic gear } B}{\text { Electronic gear } A}=\frac{\text { Ball screw lead }}{\text { Minimum travel amount }} \times$ Gear ratio
In this example: $1,000 \times \frac{\text { Electronic gear } B}{\text { Electronic gear } A}=\frac{12 \mathrm{~mm}}{0.01 \mathrm{~mm}} \times 1$
Result: $\frac{\text { Electronic gear } B}{\text { Electronic gear } A}=\frac{12}{10}$
Therefore, the electronic gear A and B are 10 and 12 respectively, and the resolution will be $1,200 P / R$.

- Example: Rotary table

Step angle per one rotation : 360°
Minimum step angle $: 0.01^{\circ}$
Gear ratio : 10 [Using the geared motor (gear ratio 10:1)]
Resolution $=1,000 \times \frac{\text { Electronic gear } B}{\text { Electronic gear } A}=\frac{\text { Minimum step angle }}{\text { Step angle per one rotation }} \times$ Gear ratio
In this example: $1,000 \times \frac{\text { Electronic gear } B}{\text { Electronic gear } A}=\frac{360^{\circ}}{0.01^{\circ}} \times \frac{1}{10}$
Result: $\frac{\text { Electronic gear } B}{\text { Electronic gear } A}=\frac{36}{10}$
Therefore, the electronic gear A and B are 10 and 36 respectively, and the resolution will be $3,600 P / R$.

2-2 Operating current

The maximum driver operating current can be changed using the "RUN current" parameter. If the load is small and there is an ample allowance for torque, the motor temperature rise can be suppressed by setting a lower operating current.

Related parameter

MEXEO2 tree view	Parameter name	Description	Initial value
Motor	RUN current	Sets the motor operating current based on the rated current being 100%. $[$ Setting range $]$ 0 to $1,000(1=0.1 \%)$	1,000

Note Excessively low operating current may cause a problem in starting the motor or holding the load in position. Do not lower the operating current more than necessary.

2-3 Standstill current

When the motor stops, the current cutback function will be actuated to lower the motor current to the standstill current. The standstill current is a value in which the set value of the "STOP current" parameter is multiplied by the rated current (100%). The standstill current does not change even when the "RUN current" parameter has been changed.

Related parameter

MEXE02 tree view	Parameter name	Description	Initial value
Motor	STOP current	Sets the motor standstill current as a percentage of the rated current, based on the rated current being 100%. [Setting range] 0 to $500(1=0.1 \%)$	500

2-4 Acceleration/deceleration rate and acceleration/deceleration time

Acceleration/deceleration unit

Set the acceleration/deceleration unit using the "Acceleration/deceleration unit" parameter. Acceleration/deceleration rate ($\mathrm{ms} / \mathrm{kHz}$) or acceleration/deceleration time (s) can be set.

Related parameter

MEXE02 tree view	Parameter name	Description	Initial value
Operation	Acceleration/ deceleration unit	Sets the acceleration/deceleration unit. $[$ Setting range $]$ $0: \mathrm{ms} / \mathrm{kHz}$ $1: \mathrm{s}$	0

Common setting and separate setting of the acceleration/deceleration

The acceleration/deceleration for positioning operation or continuous operation can be set as follows using the "Acceleration/deceleration type" parameter:
Separate: The acceleration/deceleration set under the applicable operation data No. will be followed. Common: The setting of the "Common acceleration" and "Common deceleration" parameters will be followed.
memo - When performing linked operation, the acceleration/deceleration for the starting linked operation data No. is applied even when the "Acceleration/deceleration type" parameter is set to "Separate."

- Refer to p. 191 for the acceleration/deceleration when performing variable speed operation.

Related parameter

MEXE02 tree view	Parameter name	Description	Initial value
Operation	Acceleration/ deceleration type	Sets whether to use the common acceleration/ deceleration or the acceleration/deceleration specified for the operationdata. [Setting range] 0: Common $1:$ Separate	1

2-5 Smooth drive

You can achieve lower vibration and smoother movement using the smooth drive function.
You may feel vibration in the low speed range when this function is set to "disable." Set the function to "enable" under normal conditions of use.

Related parameter

MEXE02 tree view	Parameter name	Description	Initial value
Motor	Smooth drive	Sets whether to enable or disable smooth drive function. [Setting range $]$ $0:$ Disable $1:$ Enable	1

2-6 Speed filter

If the "Filter selection" parameter is set to "Speed filter," the motor response can be adjusted with the "Speed filter" parameter.
When the speed filter level is raised, vibration can be suppressed during low-speed operation, and starting/stopping of the motor will become smooth. Note, however, that an excessively high filter level will result in lower synchronicity with commands. Set an appropriate value according to the specific load and purpose.

Related parameter

MEXE02 tree view	Parameter name	Description	Initial value
Motor	Filter selection	Sets the filter function to adjust the motor response. [Setting range] 0: Speed filter $1:$ Moving average filter	
		Adjusts the motor response. [Setting range $]$ 0 to 200 ms	1

memo When setting the value of the "Speed filter" parameter to " 0 ," this function will be invalid.

2-7 Moving average filter

The motor response can be adjusted when setting the "Filter selection" parameter to "Moving average filter" and setting the value for the "Moving average time" parameter.
The positioning time can be shortened by suppressing the residual vibration for the positioning operation. Optimum value for the "Moving average time" parameter varies depending on the load or operation condition. Set a suitable value based on the load or application.

Related parameter

MEXE02 tree view	Parameter name	Description	Initial value
Motor	Filter selection	Sets the filter function to adjust the motor response. [Setting range] $0:$ Speed filter 1: Moving average filter	0
	Moving average time	Sets the time constant for the moving average filter. [Setting range] 1 to 200 ms	1

2-8 Speed error gain

The speed error gain is used to suppress vibration while the motor is operating or accelerating/decelerating.

Related parameter

MEXE02 tree view	Parameter name	Description	Initial value
Motor	Speed difference gain 1	Adjusts vibration during operation. [Setting range] 0 to 500	45
	Speed difference gain 2	Adjusts vibration during acceleration/deceleration. [Setting range] 0 to 500	45

2-9 Control mode

The driver operates in one of two control modes: the normal mode, and the current control mode. If noise is heard during high-speed operation or there is notable vibration, it may be effective to switch to the current control mode. Note, however, that a slight delay may occur in the current control mode, compared to the normal mode, depending on the condition of the load. Keep the driver in the normal mode during normal conditions of use.
Related parameter

MEXE02 tree view	Parameter name	Description	Initial value
Motor	Control mode	Sets the control mode of the driver.	[Setting range] $0:$ Normal mode $1:$ Current control mode

2-10 Position loop gain, speed loop gain, speed loop integral time constant

These items are effective in the current control mode.
Vibration that occurs while the motor is accelerating/decelerating or at standstill can be adjusted to an optimal value. (The optimal value varies depending on the equipment and operating conditions.)
Related parameter

MEXEO2 tree view	Parameter name	Description	Initial value
	Position loop gain	Adjusts the motor response in reaction to the position deviation. When this value is increased, the deviation between the command position and actual position will be small. An excessively high value may increase the motor overshooting or cause motor hunting. [Setting range] 1 to 50	10
Motor	Speed loop gain	Adjusts the motor response in reaction to the speed deviation. When this value is increased, the deviation between the command speed and actual speed will be small. An excessively high value may increase the motor overshooting or cause motor hunting. [Setting range] 10 to 200	180
		Adjusts the deviation that cannot be adjusted with the speed loop gain. An excessively high value may slow the motor response. On the other hand, an excessively low value may cause motor hunting. [Setting range] 100 to 2,000 (1=0.1 ms)	1,000
	Speed loop integral time constant		

3 Operation type and function list

Operation

[Setting by operation data and parameters]

Positioning operation

Function

[Setting by parameters]

- I/O	- Motor function	- Operation function	- Return-to-home function
Input logic level	Operating current	Acceleration/deceleration type	Home offset
STOP input action	Standstill current	Acceleration/deceleration unit	External sensor signal detection
Overtravel	Speed filter	JOG operation	Return-to-home speed
- I/O function	Moving average filter	Automatic return operation	Return-to-home starting direction
Input function	•I/O function (RS-485)	- Alarm/warning	- Coordination setting
Input logic	Input function	Alarm detection	Resolution (electronic gear)
Output function	Output function	Warning detection	Wrap function
			Motor rotation direction

4 Positioning operation

Positioning operation is one in which motor operating speed, position (travel amount) and other items are set as operation data and then executed. When the positioning operation is executed, the motor begins at the starting speed and accelerates until the operating speed is reached. Then, once the operating speed is reached, that speed is maintained. The motor decelerates when the stopping position approaches, and finally comes to a stop.
The operation function can also be set in operation data. The operation function is how to operate consecutive operation data (example: operation data No.0, No.1, No.2).

4-1 Operation data

The following data are the operation data for positioning operation. Up to 64 operation data can be set (data Nos. 0 to $63)$.

MEXE02 tree view	Setting item	Description	Initial value
Operation data	Position	Sets the position (distance) for positioning operation. [Setting range] $-8,388,608 \text { to }+8,388,607 \text { step }$	0
	Operating speed	Sets the operating speed in positioning operation. [Setting range] 0 to $1,000,000 \mathrm{~Hz}$	1,000
	Acceleration	Sets the acceleration rate (acceleration time) in positioning operation. [Setting range] 1 to $1,000,000$ ($1=0.001 \mathrm{~ms} / \mathrm{kHz}$ or $1=0.001 \mathrm{~s}$)	1,000
	Deceleration	Sets the deceleration rate (deceleration time) in positioning operation. [Setting range] 1 to $1,000,000$ ($1=0.001 \mathrm{~ms} / \mathrm{kHz}$ or $1=0.001 \mathrm{~s}$)	1,000
	Operation mode	Selects how to specify the position (travel amount) in positioning operation. [Setting range] 0: Incremental (INC) 1: Absolute (ABS)	0
	Operation function	Sets the operation mode to execute positioning operation. [Setting range] 0 : Single-motion 1: Linked-motion 2: Linked-motion 2 3: Push	0
	Dwell time	Sets the dwell time to be used in linked-motion 2 operation. [Setting range] $0 \text { to 50,000 (1=0.001 s) }$	0
	Push current	Sets the current rate of push-motion operation. [Setting range] 0 to 1,000 (1=0.1 \%)	200
	Sequential positioning	Sets whether to enable or disable sequential positioning operation. [Setting range] 0 : Disable 1: Enable	0

- Position, operating speed, acceleration, deceleration

The acceleration/deceleration for positioning operation can be set as follows using the "Acceleration/deceleration type" parameter:
Separate :The acceleration/deceleration set under the applicable operation data No. will be followed (Each 64 data for acceleration and deceleration).
Common:The setting of the "Common acceleration" and "Common deceleration" parameter will be followed (Each one data for acceleration and deceleration).

When the starting speed < operating speed

When the starting speed \geq operating speed

- Operation mode

The following two operation modes are available:

Absolute (ABS) mode

The position (distance) from home is set [Absolute positioning].
Example: When positioning operation is performed with setting the starting point to 1,000 and setting the destination to $+3,000$ and $-3,000$

Incremental (INC) mode

Each motor destination becomes the starting point for the next movement. This mode is suitable when the same position (distance) is repeatedly used [Incremental positioning].

Example: When positioning operation is performed with setting the starting point to 1,000 and setting the destination to $+3,000$ and $-3,000$

- Operation function, dwell time

The following four operation function are available:

Operation function	Description	Ref.
Single-motion	A single operation data set is executed.	p. 172
Linked-motion	Multiple sets of operation data are linked to execute multi-speed positioning operation.	p. 173
Linked-motion 2	Dwell time (stop waiting time) can be set between operation data. Operation data whose rotation direction is different can also be linked.	p. 174
Push-motion	This is an operation of continuously applying pressure on the load when pressing against the load during positioning operation.	p. 176

4-2 Starting method of positioning operation

The following three types are available in the starting method.

Starting method	\quad Description
Data number selecting operation	When the START input is turned ON with selecting the operation data No. by a combination of the M0 to M5 inputs, the positioning operation will perform.
Direct positioning operation	When any of the MS0 to MS5 inputs is turned ON, the positioning operation corresponding to the input data No. will perform.
Sequential positioning operation	Positioning operation is performed to the next operation data No. every time a SSTART input signal is input.

Data number selecting operation

Select an operation data based on a combination of ON/OFF status of the M0 to M5 inputs. Refer p. 93 for details.

Operation data No.	M5	M4	M3	M2	M1	M0
0	OFF	OFF	OFF	OFF	OFF	OFF
1	OFF	OFF	OFF	OFF	OFF	ON
2	OFF	OFF	OFF	OFF	ON	OFF
\cdot						
\cdot						
\cdot						
61	ON	ON	ON	ON	OFF	ON
62	ON	ON	ON	ON	ON	OFF
63	ON	ON	ON	ON	ON	ON

Operating method

1) Check the READY output is ON.
2) Select the operation data No. by a combination of the MO to M5 inputs and turn the START input ON.
3) The motor starts positioning operation.
4) Check that the READY output has been turned OFF and turn the START input OFF.
5) When the positioning operation is completed, the READY output will be turned ON.

[^3]
Direct positioning operation

When any of the MS0 to MS5 inputs is turned ON, the positioning operation corresponding to the input data No. will perform. Since the positioning operation is enabled by turning any of the MSO to MS5 inputs ON, you can save the step of selecting the operation data No.
The operation data assigning to the MS0 to MS5 inputs will be set by parameters.

Related parameter

MEXE02 tree view	Parameter name	Description	Initial value
I/O	MS0 operation No. selection	Sets the operation data No. corresponding to MS0 to MS5 input. [Setting range] 0 to 63	0
	MS1 operation No. selection		1
	MS2 operation No. selection		2
	MS3 operation No. selection		3
	MS4 operation No. selection		4
	MS5 operation No. selection		5

Operating method

1) Check the READY output is ON.
2) Turn the MSO input ON.
3) The motor starts positioning operation.
4) Check that the READY output has been turned OFF and turn the MSO input OFF.
5) When the positioning operation is completed, the READY output will be turned ON.

■ Sequential positioning operation

In sequential positioning operation, whenever turning the SSTART input ON, the positioning operation for the following operation data No. will be performed. This function is useful when multiple positioning operations must be performed sequentially, because there is no need to select each data number.
When the "sequential positioning" of operation data is executed up to the data No. set to "disable", the operation returns to the original data No. that was selected before starting the sequential positioning operation. And the sequential positioning operation will start again.
If the starting point for the sequential positioning operation is changed using the M0 to M5 inputs or the MS0 to MS5 inputs, multiple sequential positioning operations can be set. It is convenient for setting a different operating pattern for each component or each process of works.

- When the operating pattern is one type

1) The positioning operation for the operation data No. 0 is performed by turning the SSTART input ON.
2) After the operation 1) is completed, when turning the SSTART input ON again, the positioning operation for the operation data No. 1 will be performed.
3) After the operation 2) is completed, when turning the SSTART input ON again, the positioning operation for the operation data No. 2 will be performed.
4) After the operation 3) is completed, when turning the SSTART input ON again, the positioning operation will be performed by returning to the operation data No. 0 because the sequential positioning for the operation data No. 3 has been set to "disable."

Setting example

Operation data	Sequential positioning
No.0	
No.1	Enable
No.2	
No.3	Disable

- When the operating patterns are multiple

1) After selecting the operation data No. 3 that is the starting point for the sequential positioning operation, the positioning operation will be performed by turning the START input ON.
2) After the operation 1) is completed, when turning the SSTART input ON again, the positioning operation for the operation data No. 4 will be performed.
3) After the operation 2) is completed, when turning the SSTART input ON again, the positioning operation for the operation data No. 5 will be performed.
4) After the operation 3) is completed, when turning the SSTART input ON again, the positioning operation will be performed by returning to the operation data No. 3 because the sequential positioning for the operation data No. 6 has been set to "disable."
5) After the operation 4) is completed, the positioning operation is performed by selecting the operation No. 7 and turning the START input ON.
6) The operation data No. 7 becomes a starting point for a new sequential positioning operation.
7) After the operation 5) is completed, when turning the SSTART input ON again, the positioning operation for the operation data No. 8 will be performed.
8) When turning the SSTART input ON again after the operation 6) is completed, the positioning operation will be performed by returning to the operation data No. 7 because the sequential positioning for the operation data No. 9 has been set to "disable."

Setting example

Operation data	Sequential positioning
No. 3	Enable
No. 4	
No. 5	Disable
No. 6	Enable
No. 7	Disable
No. 8	
No. 9	

- Operating method

1) Check the READY output is ON.
2) Turn the SSTART input ON.
3) The motor starts positioning operation.
4) Check that the READY output has been turned OFF and turn the SSTART input OFF.
5) When the positioning operation is completed, the READY output will be turned ON.

- Key points about sequential positioning operation

When performing any of the following operations while sequential positioning operation is performed, the starting point for sequential positioning will be changed to the operation data No.O. And the current operation data No. is set to " -1 ."

- When the DC power supply is turned ON.
- When operations other than the positioning operation are performed (return-to home operation, continuous operation, etc.).
- When an alarm is generated and reset.
- When the STOP input is turned ON.
- When a signal to put the motor into a non-excitation state, such as the FREE input or C-ON input, was input.
- When the P-PRESET is executed.
- When a configuration is executed.
memo Set "enable" the "sequential positioning" even when sequential positioning is performed by the operation data being set to "Linked-motion" or "Linked-motion 2" in the "operation function."

4-3 Operation function

Single-motion operation

The positioning operation is performed only once using a single operation data set.

- Example of single-motion operation

	Operation mode	Postion [step]	Operating speed [Hz$]$	Operation function	Push current [\%]	Dwell time [s]	Sequential postioning	Acceleration [ms/kHz] or [s]	Deceleration [ms/kHz] or [s]
\#0	Incremental (INC)	0	1000	Sinale-motion	200	0000	Disable.	1.000	1.000
\#1	Incremental (INC)	5000	5000	Singlemotion	20.0	0.000	Disable	1000.000	1000.000

Operation example

Operating method

1) Check the READY output is ON.
2) Select the operation data No. 1 by turning the MO input ON and turn the START input ON.
3) The motor starts the positioning operation for the operation data No.1.
4) Check that the READY output has been turned OFF and turn the START input OFF.
5) When the positioning operation is completed, the READY output will be turned ON.

* In direct I/O, turn the START input ON after setting the M0 to M5 inputs. In remote I/O, the operation will be performed even when turning the M0 to M5 inputs and the START input ON simultaneously.

- Linked-motion operation

When the "operation function" is set to "linked-motion" using operation data, positioning operation based on the next data number will be performed without stopping the motor.
If operation data includes data for which "single-motion" or "push" is set, the motor will stop after the positioning with respect to the "single" or "push" operation data is completed.
A maximum of four operation data can be linked. Note that only operation data of the same direction can be linked.
memo - Multiple operation data of different directions cannot be linked. An operation data error alarm will generate during operation.

- Up to four sets of operation data can be linked. When combining the linked-motion operation and the linked-motion 2 operation, make sure the total number of linked operation data sets does not exceed four. When linked-motion operation is performed with five or more sets of operation data linked together, an operation data error alarm will generate upon start of operation.
- No. 0 will not be linked even when "linked-motion" is set for data No.63, because the operation pertaining to No. 63 will be processed independently.
- The acceleration/deceleration in linked-motion operation corresponds to the acceleration/ deceleration specified for the operation data No. with which the linked-motion operation is started.
- When the operation data linked last is being set to "push," the push speed is applied as the starting speed.
- Example of linked-motion operation

	Operation mode	Position [step]	Operating speed [Hz$]$	Operation function	Push current [\%]	Dwell time [s]	Sequential positioning	Acceleration [$\mathrm{ms} / \mathrm{kHz}$] or [s]	Deceleration [ms/kHz] or [s]
\#0	Incremental(INC)	0	1000	Sinale-motion	20.0	0.000	Disable.	1.000	1.000
\#1	Incremental (INC)	5000	5000	Linked-motion	20.0	0.000	Disable	1000.000	1000.000
\#2	Incremental (INC)	20000	10000	Single-motion	20.0	0.000	Disable	1.000	1.000

Operation example

Operating method

1) Check the READY output is ON.
2) Select the operation data No. 1 by turning the MO input ON and turn the START input ON.
3) The motor starts the positioning operation in which the operation data No. 1 and No. 2 are linked.
4) Check that the READY output has been turned OFF and turn the START input OFF.
5) When the positioning operation is completed, the READY output will be turned ON.

[^4]
■ Linked-motion 2 operation

By setting the "operation function" of operation data to "Linked-motion2," an operation data whose rotation direction is different can be linked. In this case, the system stops for the dwell time after each positioning operation, and then performs operation according to the next operation data. If operation data includes data for which "single-motion" or "push" is set, the motor will stop after the positioning with respect to the "single" or "push" operation data is completed.
memo - Up to four sets of operation data can be linked. When combining the linked-motion operation and the linked-motion 2 operation, make sure the total number of linked operation data sets does not exceed four. When linked-motion operation is performed with five or more sets of operation data linked together, an operation data error alarm will generate upon start of operation.

- No. 0 will not be linked even when "linked-motion2" is set for data No.63, because the operation pertaining to No. 63 will be processed independently.

- Example of linked-motion 2 operation

	Operation mode	Position [step]	Operating speed [Hz]	Operation function	Push current [\%]	Dwell time [s]	Sequential positioning	Acceleration [$\mathrm{ms} / \mathrm{kHz}$] or [s]	Deceleration [ms/kHz] or [s]
\#0	Incremental (INC)	0	1000	Sinale-motion	20.0	0.000	Disable	1.000	1.000
\#1	Incremental (INC)	5000	5000	Linked-motion 2	20.0	1.000	Disable	1000.000	1000.000
\#2	Incremental (INC)	-3000	3000	Single-motion	20.0	0.000	Disable	1000.000	1000.000

Operation example

Operating method

1) Check the READY output is ON.
2) Select the operation data No. 1 by turning the MO input ON and turn the START input ON.
3) The motor starts the positioning operation for the operation data No.1.
4) Check that the READY output has been turned OFF and turn the START input OFF.
5) When the positioning operation 3) is completed, the MOVE output will be turned OFF.
6) When the dwell time has passed, the positioning operation for the operation data No. 2 will automatically start. At the same time, the MOVE output will be turned ON.
7) When the positioning operation for the operation data No. 2 is completed, the READY output will be turned ON.

[^5]- Example of linked-motion 2 operation;

When combining the linked-motion operation and the linked-motion 2 operation

	Operation mode	Position [step]	Operating speed [Hz$]$	Operation function	Push current [\%]	Dwell time [s]	Sequential positioning	Acceleration [$\mathrm{ms} / \mathrm{kHz}$] or [s]	Deceleration [$\mathrm{ms} / \mathrm{kHz}$] or [s]
\#0	Incremental (INC)	0	1000	Single-motion	20.0	0.000	Disable	1.000	1.000
\#1	Incremental (INC)	5000	3000	Linked-motion	20.0	0.000	Disable	1000.000	1000.000
\#2	Incremental (INC)	10000	5000	Linked-motion	20.0	0.000	Disable	1.000	1.000
\#3	Incremental (INC)	25000	7000	Linked-motion 2	20.0	1.000	Disable	1.000	1.000
\#4	Absolute (ABS)	0	7000	Single-motion	20.0	0.000	Disable	1000.000	1000.000

Operation example

Operating method

1) Check the READY output is ON.
2) Select the operation data No. 1 by turning the MO input ON and turn the START input ON.
3) The motor starts the positioning operation in which the operation data from No. 1 to No. 3 are linked.
4) Check that the READY output has been turned OFF and turn the START input OFF.
5) When the positioning operation 3) is completed, the MOVE output will be turned OFF.
6) When the dwell time has passed, the positioning operation for the operation data No. 4 will automatically start. At the same time, the MOVE output will be turned ON.
7) When the positioning operation for the operation data No. 4 is completed, the READY output will be turned ON.

[^6]
4-4 Push-motion operation

When the "operation function" is set to "push," the motor performs an operation of continuously applying pressure on the load when pressing against the load. In push-motion operation, the motor performs constant speed operation at the operating speed of the selected operation data No. but the acceleration/deceleration will not be applied. The motor becomes push-motion status when pressing against the load, and the TLC output and READY output are turned ON. The set current value of push-motion operation is applied to the motor current.
When the operation was completed with non-push-motion status, the motor stops, and the END output and READY output are turned ON. The set current of push-motion operation is applied to the motor current at standstill. When the STOP input is turned ON, the motor stops, and the END output and READY output are turned ON. The STOP current is applied to the motor current at standstill.

Note Do not perform push-motion operation with geared motors. Doing so may cause damage to the motor or gear part.
memo - Regardless of resolution, the maximum speed of push-motion operation is $500 \mathrm{r} / \mathrm{min}$. If the pushmotion operation is started by setting higher speed than $500 \mathrm{r} / \mathrm{min}$, an operation data error alarm will generate.

- If push-motion operation is performed for a long time while a large push-motion current is set, the driver may increase heat generation and generate the main circuit overheat alarm.
- Example of push-motion operation; When it had pressed against the load

	Operation mode	Position [step]	Operating speed [$\left.\mathrm{H}_{2}\right]$	Operation function	Push current [\%]	Dwell time [s]	Sequential postioning	Acceleration [ms/kHz] or [s]	Deceleration [ms/kHz] or [s]
\#0	Incremental (INC)	0	1000	Sinale-motion	20.0	0.000	Disable	1.000	1.000
\#1	Incremental (INC)	5000	500	Push	50.0	0.000	Disable	1.000	1.000

Operation example

Operating method

1) Check the READY output is ON.
2) Select the operation data No. 1 by turning the MO input ON and turn the START input ON.
3) The motor starts the positioning operation for the operation data No.1.
4) Check that the READY output has been turned OFF and turn the START input OFF.
5) When the motor becomes push-motion status, the TLC output will be turned ON and then the READY output will be turned ON.

[^7]- Example of push-motion operation; When it had not pressed against the load

Operation example

Operating method

1) Check the READY output is ON.
2) Select the operation data No. 1 by turning the MO input ON and turn the START input ON.
3) The motor starts the positioning operation for the operation data No.1.
4) Check that the READY output has been turned OFF and turn the START input OFF.
5) When the motor reaches to the target position, the operation will be stopped and the READY output will be turned ON. Since the motor did not become push-motion status, the TLC output remains OFF.

* In direct I/O, turn the START input ON after setting the M0 to M5 inputs. In remote I/O, the operation will be performed even when turning the M0 to M5 inputs and the START input ON simultaneously.
- Example of push-motion operation; When combining the linked-motion operation and the pushmotion operation

	Operation mode	Position [step]	Operating speed [Hz]	Operation function	Push current [\%]	Dwell time [s]	Sequential positioning	Acceleration [$\mathrm{ms} / \mathrm{kHz}$] or [s]	Deceleration [ms/kHz] or [s]
\#0	Incremental (INC)	0	1000	Sinale-motion	20.0	0.000	Disable	1.000	1.000
\#1	Incremental (INC)	5000	5000	Linked-motion	20.0	0.000	Disable	1000.000	1000.000
\#2	Incremental (INC)	5000	500	Push	50.0	0.000	Disable	1.000	1.000

Operation example

Operating method

1) Check the READY output is ON.
2) Select the operation data No. 1 by turning the MO input ON and turn the START input ON.
3) The motor starts the positioning operation in which the operation data No. 1 and No. 2 are linked.
4) Check that the READY output has been turned OFF and turn the START input OFF.
5) When the motor becomes push-motion status, the TLC output will be turned ON and then the READY output will be turned ON.

[^8]
5 Return-to-home operation

Return-to-home is an operation in which the reference point of positioning (mechanical home) is detected automatically. Return-to-home operation is performed to return to the home from the current position when the power supply is turned on or the positioning operation is completed.
Return-to-home operation can be performed in the following four modes:

Operation type	Description	Feature
3-sensor mode	The motor operates at the "operating speed of home- seeking." When the HOME sensor is detected, the motor will stop and the stop position will be the home.	$\bullet 3$ external sensors are needed. *3 Operating speed is high (Operating speed of home- seeking).
2-sensor mode	The motor operates at the "starting speed of home- seeking." When the limit sensor is detected, the motor will rotate in the reverse direction and escape from the limit sensor. After escaping from the limit sensor, the motor will move 200 steps and stop, and then the stop position will be the home. *2	$\bullet 2$ external sensors are needed. • Operating speed is low (Starting speed of home-seeking).
Push mode *1	The motor operates at the "starting speed of home- seeking." When the moving part for the motor is pressed against a mechanical stopper etc., the motor will rotates in the reverse direction. After reversing, the motor will move 200 steps and stop, and then the stop position will be the home. *2	\bullet No external sensor is needed. - Operating speed is low (Starting speed of home-seeking).
Position preset	When executing the P-PRESET at the position that the motor stops, the command position will be the value of the "Preset position" parameter. The home can be set to any position.	\bullet No external sensor is needed. \bullet The home can be set to any position.

*1 Do not perform push-mode return-to-home operation for geared motors.
*2 It moves 200 steps regardless of resolution. Therefore, the actual travel distance may vary according to resolution.
*3 The home can be detected even one piece of the external sensor. In that case, connect only the HOME sensor.
Additional function

Additional function	2-sensor mode 3-sensor mode Push mode	Position preset	Related parameter
Home offset	Possible	Not possible	Position offset of home-seeking
External sensor (signal) detection	Possible	Not possible	SLIT detection with home-seeking TIM signal detection with home-seeking
Command position after returning to home	The position becomes "0"	Any position	Preset position

- Home offset

This is a function to perform positioning operation of the offset amount set by the parameter after return-to-home operation and to set the stop position to the home. The position set by the home offset is called "electrical home" in distinction from the usual home.
If the amount of offset from mechanical home is " 0 ," the mechanical home and electrical home will become the same.

- Detecting the external sensor (signal)

When detecting the home, use of the SLIT input and/or TIM signal will increase the accuracy of home detection.
memo When the TIM output is used, set the resolution to be an integral multiple of 50.

- Command position after returning to home

When executing the P-PRESET at the position that the motor stops, the command position will be the value of the "Preset position" parameter.

Parameters related to return-to-home operation

MEXE02 tree view	Parameter name	Description	Initial value
Home operation	Home-seeking mode	Sets the mode for return-to-home operation. [Setting range] 0: 2-sensor mode 1:3-sensor mode 2: Push mode	1
	Operating speed of home-seeking	Sets the operating speed for return-to-home operation. [Setting range] 1 to $1,000,000 \mathrm{~Hz}$	1,000
	Acceleration/ deceleration of homeseeking	Sets the acceleration/deceleration rate (acceleration/deceleration time) for return-tohome operation. [Setting range] 1 to $1,000,000(1=0.001 \mathrm{~ms} / \mathrm{kHz}$ or $1=0.001 \mathrm{~s}$)	1,000
	Starting speed of homeseeking	Sets the starting speed for return-to-home operation. [Setting range] 1 to $1,000,000 \mathrm{~Hz}$	500
	Position offset of home-seeking	Sets the amout of offset from mechanical home. [Setting range] $-8,388,608$ to $8,388,607$ step	0
	Starting direction of home-seeking	Sets the starting direction for home detection. [Setting range] 0 : Negative side 1: Positive side	1
	SLIT detection with home-seeking	Sets whether or not to concurrently use the SLIT input for return-to-home operation. [Setting range] 0: Disable 1: Enable	0
	TIM signal detection with home-seeking	Sets whether or not to concurrently use the TIM signal for return-to-home operation. [Setting range] 0: Disable 1: Enable	0
	Operating current of home-seeking with push-motion	Sets the operating current for push-motion return-to-home operation based on the rated current being 100%. [Setting range] 0 to 1,000 ($1=0.1 \%$)	1,000

- Operation example (when using 3-sensor mode)

Operating sequence in seeing a time axis

Operating sequence in seeing a travel amount

- Operating method

1) Check the READY output is ON.
2) Turn the HOME input $O N$.
3) Return-to-home operation will be started.
4) Check that the READY output has been turned OFF and turn the HOME input OFF.
5) When return-to-home operation is completed, the HOME-P output will be turned ON.

5-1 Operation sequence

- 3-sensor mode

VS: Starting speed of home-seeking
VR: Operating speed of home-seeking
VL: Last speed of return-to-home (When VS $<500 \mathrm{~Hz}$: VS, When VS $\geq 500 \mathrm{~Hz}$: 500 Hz)
--- Broken line indicates a home offset move.

Starting position of return-to-home operation	Starting direction of return-tohome operation: Positive direction	Starting direction of return-tohome operation: Negative direction
-LS		
+LS		
HOMES		
Between HOMES and -LS		
Between HOMES and +LS		

- When using the HOME sensor only

If the limit sensor is not used such as a rotating mechanism, operation sequences are as follows.

Starting position of return-to-home operation	Starting direction of return-tohome operation: Positive direction		Starting direction of return-tohome operation: Negative direction		
HOMES	Positive direction Negative direction		Positive direction Negative direction		$\begin{gathered} -V R \\ -V S \\ - \\ -V S \\ -V R \end{gathered}$
Not HOMES	Positive direction Negative direction		Positive direction Negative direction		$\begin{aligned} & \text {-VR } \\ & \text {-VS } \\ & - \\ & -V S \\ & -V R \end{aligned}$

Note Depending on the setting value of the "Acceleration/deceleration of home-seeking" parameter, the motor may decelerate to a stop in excess of the HOME sensor after the HOME sensor was detected. Since there is a risk of contact if the distance between the mechanical end and the HOME sensor is close, provide enough distance between them.

- When concurrently using the SLIT input and/or TIM signal

After the ON edge of the HOME sensor is detected, the return-to-home operation will continue until the external sensor (signal) will be detected. If the external sensor (signal) is detected while the HOME sensor is ON, the return-tohome operation will complete.

Operation sequence after detecting the ON edge of the HOME sensor

Home detection signal	Starting direction of return-tohome operation: Positive direction	Starting direction of return-tohome operation: Negative direction
SLIT input		
TIM signal		
SLIT input and TIM signal		

2-sensor mode

VS: Starting speed of home-seeking
VR: Operating speed of home-seeking
VL: Last speed of return-to-home (When VS $<500 \mathrm{~Hz}:$ VS, When VS $\geq 500 \mathrm{~Hz}: 500 \mathrm{~Hz}$)
--- Broken line indicates a home offset move.

[^9]
- When concurrently using the SLIT input and/or TIM signal

When the limit sensor is detected, the motor will rotate in the reverse direction and escape from the limit sensor. After escaping from the limit sensor, the motor will move 200 steps and stop once. Then, the motor operation will continue until the external sensor (signal) will be detected. When the external sensor (signal) is detected, return-to-home operation will complete.
Operation sequence after detecting the ON edge of the limit sensor

Home detection signal	Starting direction of return-tohome operation: Positive direction	Starting direction of return-tohome operation: Negative direction
SLIT input		
TIM signal		
SLIT input and TIM signal		

* After pulling out of the limit sensor, the motor will move 200 steps.

Push mode

VS: Starting speed of home-seeking
VR: Operating speed of home-seeking
VL: Last speed of return-to-home (When VS < 500 Hz : VS, When VS $\geq 500 \mathrm{~Hz}: 500 \mathrm{~Hz}$)
-- - Broken line indicates a home offset move.

Starting position of return-to-home operation	Starting direction of return-tohome operation: Positive direction	Starting direction of return-tohome operation: Negative direction
Negative direction mechanical end		
Positive direction mechanical end		
Between mechanical ends		

* The motor will move 200 steps from the mechanical end.

- When concurrently using the SLIT input and/or TIM signal

When the moving part for the motor is pressed against a mechanical stopper etc., the motor will rotates in the reverse direction. After reversing, the motor will move 200 steps and stop once. Then, the motor operation will continue until the external sensor (signal) will be detected. When the external sensor (signal) is detected, return-to-home operation will complete.

Home detection signal	Starting direction of return-tohome operation: Positive direction	Starting direction of return-tohome operation: Negative direction
SLIT input		
TIM signal		
SLIT input and TIM signal		

* The motor will move 200 steps from the mechanical end

Note

- Do not perform push-mode return-to-home operation for geared motors. Doing so may cause damage to the motor.
- The maximum speed for the push-mode is $500 \mathrm{r} / \mathrm{min}$ on the motor output shaft regardless of resolution. Starting return-to-home operation with setting faster speed than $500 \mathrm{r} / \mathrm{min}$ may cause damage to the motor.

5-2 Position preset

When the P-PRESET is executed, the command position is set as the value of the "Preset position" parameter. However, the preset will not execute in the following conditions.

- When the motor is operating
- When an alarm is present
- Related parameter

MEXE02 tree view	Parameter name	Description	Initial value
Coordinates	Preset position	Sets the preset position. [Setting range $]$ $-8,388,608$ to 8,388,607 step	0

- Operating method

1) Check the READY output is ON.
2) Turn the P-PRESET input ON
3) When the driver internal processing is completed, the HOME-P output will be turned ON.
4) Check the HOME-P output has been turned ON, and then turn the P-PRESET input OFF.

6 Continuous operation

The motor operates continuously while the FWD or RVS input is ON.
Operation is performed based on the FWD or RVS input and the operating speed corresponding to the selected operation data No. When the operation data No. is changed during continuous operation, the speed will change to the speed specified by the new operation data No.
When the FWD or RVS input is turned OFF, the motor will decelerate to a stop. If the signal of the same direction is turned ON again during deceleration, the motor will accelerate and continue operating.
If the FWD and RVS inputs are turned ON simultaneously, the motor will decelerate to a stop.

Operation data

Operation data for continuous operation are as follows.

MEXE02 tree view	Setting item	Description	Initial value
Operation data	Operating speed	Sets the operating speed in continuous operation. [Setting range] 1 to $1,000,000 \mathrm{~Hz}$	1,000
	Acceleration	Sets the acceleration rate (acceleration time) in continuous operation. * [Setting range] 1 to $1,000,000(1=0.001 \mathrm{~ms} / \mathrm{kHz}$ or $1=0.001 \mathrm{~s})$	1,000
	Deceleration	Sets the deceleration rate (deceleration time) in continuous operation. * [Setting range] 1 to $1,000,000(1=0.001 \mathrm{~ms} / \mathrm{kHz}$ or $1=0.001 \mathrm{~s})$	1,000

* The acceleration/deceleration for continuous operation can be set as follows using the "Acceleration/deceleration type" parameter:
Separate :The acceleration/deceleration set under the applicable operation data No. will be followed (Each 64 data for acceleration and deceleration).
Common:The setting of the "Common acceleration" and "Common deceleration" parameter will be followed (Each one data for acceleration and deceleration).

6-1 Starting method of continuous operation

When selecting the operation data No. and turning the FWD input or RVS input ON, continuous operation will be started. Select an operation data based on a combination of ON/OFF status of the M0 to M5 inputs. Refer to p. 93 for details.

Operation data No.	M5	M4	M3	M2	M1	M0
0	OFF	OFF	OFF	OFF	OFF	OFF
1	OFF	OFF	OFF	OFF	OFF	ON
2	OFF	OFF	OFF	OFF	ON	OFF
\cdot						
\cdot						
\cdot						
61	ON	ON	ON	ON	OFF	ON
62	ON	ON	ON	ON	ON	OFF
63	ON	ON	ON	ON	ON	ON

- Operating method

1) Check the READY output is ON.
2) Select the operation data No. by a combination of the M0 to M5 inputs and turn the FWD input ON.
3) The motor starts continuous operation. The READY output will be turned OFF.
4) Select the operation data No. 1 by turning the MO input ON. The motor accelerates to the operating speed of the operation data No.1.
5) Select the operation data No. 0 by turning the MO input OFF. The motor decelerates to the operating speed of the operation data No.O.
6) Turn the FWD input OFF.
7) The motor will decelerate to a stop and the READY output will be turned ON.

[^10]
- Operating method; When combining the FWD input and RVS input

1) Check the READY output is ON.
2) Select the operation data No. by a combination of the $M 0$ to $M 5$ inputs and turn the FWD input ON.
3) The motor starts continuous operation. The READY output will be turned OFF.
4) Turn the FWD input OFF. The motor will decelerate.
5) Turn the FWD input ON while the motor is decelerating. The motor accelerates again.
6) Turn the FWD input OFF. The motor will decelerate.
7) Turn the RVS input ON while the motor is decelerating. The motor will stop once, and start rotating in the reverse direction.
8) When turning the FWD input ON while the RVS input is ON, the motor will decelerate.
9) The motor will decelerate to a stop and the MOVE output will be turned OFF.
10) When turning both the FWD input and RVS input OFF, the READY output will be turned ON.

* In direct I/O, turn the FWD input or RVS input ON after setting the M0 to M5 inputs. In remote I/O, the operation will be performed even when turning the M0 to M5 inputs and the FWD (RVS) input ON simultaneously.

6-2 Variable speed operation

■ When acceleration/deceleration is "separate"

- Acceleration/deceleration unit: ms/kHz

When decelerating

TA1: Acceleration rate of operation data No. 1 ($\mathrm{ms} / \mathrm{kHz}$)
TA2: Acceleration rate of operation data No. 2 ($\mathrm{ms} / \mathrm{kHz}$)
TD2: Deceleration rate of operation data No. 2 ($\mathrm{ms} / \mathrm{kHz}$)

- Acceleration/deceleration unit: s

- Explanation of labels

VS: Starting speed (Hz)
VR1: Operating speed of operation data No. 1 (Hz)
VR2: Operating speed of operation data No. 2 (Hz)
TA1: Acceleration time of operation data No. 1 (s)
TA2: Acceleration time of operation data No. 2 (s)
TD2: Deceleration time of operation data No. 2 (s)

- Calculation method for acceleration/deceleration rate

TAR1 $=($ VR1 - VS $) /$ TA1
TAR2 $=($ VR2 $-V S) /$ TA2
TDR2 $=($ VR2 -VS$) /$ TD2

TAR1: Acceleration rate of operation data No. $1(\mathrm{~Hz} / \mathrm{s})$
TAR2: Acceleration rate of operation data No. $2(\mathrm{~Hz} / \mathrm{s})$
TDR2: Deceleration rate of operation data No. $2(\mathrm{~Hz} / \mathrm{s})$

■ When acceleration/deceleration is "common"

- Acceleration/deceleration unit: $\mathrm{ms} / \mathrm{kHz}$

When accelerating

When decelerating

- Explanation of labels

VS: Starting speed (Hz)
TAC: Common acceleration rate ($\mathrm{ms} / \mathrm{kHz}$)
VR1: Operating speed of operation data No. 1 (Hz)
VR2: Operating speed of operation data No. 2 (Hz)
Acceleration/deceleration unit: s

7 Other operation

7-1 JOG operation

JOG operation is a function to perform positioning operation of the travel amount set in the "JOG travel amount" parameter.
When the +JOG signal to ON, JOG operation is in the positive direction.
When the -JOG signal to ON, JOG operation is in the negative direction.
This function is convenient for fine adjustment of the position.

- Related parameter

MEXEO2 tree view	Parameter name	Description	Initial value
	JOG operating speed	Sets the operating speed for JOG operation. [Setting range] 1 to $1,000,000 \mathrm{~Hz}$	1,000
Operation	Acceleration/ deceleration rate of JOG	Sets the acceleration/deceleration rate (acceleration/ deceleration time) for JOG operation. [Setting range] 1 to $1,000,000(1=0.001 \mathrm{~ms} / \mathrm{kHz}$ or $1=0.001 \mathrm{~s})$	1,000
	JOG starting speed	Sets the starting speed for JOG operation. [Setting range] 0 to $1,000,000 \mathrm{~Hz}$	500
	JOG travel amount	Sets the travel amount for JOG operation. [Setting range] 1 to $8,388,607$ step	1

- Operating method

1) Check the READY output is ON.
2) Turn the +JOG input ON.
3) The motor starts positioning operation.
4) Check the READY output has been turned OFF and turn the +JOG input OFF.
5) When the positioning operation is completed, the READY output will be turned ON.

7-2 Test operation

Test operation is performed using the MEXEO2 or OPX-2A. JOG operation and teaching function can be performed. Refer to the Support software MEXEO2 OPERATING MANUAL when setting with the MEXE02, and p. 121 when setting with the OPX-2A.

JOG operation

Connection condition or operation status for the motor and driver can be checked using JOG operation.
Example: When performing test operation with the OPX-2A

Teaching

This is a function to move the motor using the MEXE02 or OPX-2A and set the current position as the position (travel amount) of the operation data. When the position (travel amount) is set using teaching function, the "operation mode" will always be the absolute mode.
The operating speed, acceleration/deceleration and starting speed of teaching function are same as those of JOG operation.
memo Perform teaching function when the position origin is set. Refer to p .198 for setting the position origin.

7-3 Automatic return operation

When a position deviation occurs by an external force while the motor is in a non-excitation state, the motor can automatically return to the position where the motor last stopped.
When the power is turned on and motor is reexcited by turning the C-ON input ON or turning the FREE input OFF, automatic return operation will be executed under the following conditions;

- When the main power is turned on
- When the C-ON input is turned from OFF to ON
- When the FREE input is turned from ON to OFF
- Related parameter

MEXE02 tree view	Parameter name	Description	Initial value
Operation	Automatic return operation	Sets whether to enable or disable automatic return operation. [Setting range] 0: Disable 1: Enable	0
	Operation speed of automatic return	Sets the operating speed for automatic return operation. [Setting range] 1 to $1,000,000 \mathrm{~Hz}$	1,000
	Acceleration (deceleration) of automatic return	Sets the acceleration/deceleration rate (acceleration/ deceleration time) for automatic return operation. [Setting range] 1 to $1,000,000(1=0.001 \mathrm{~ms} / \mathrm{kHz}$ or 1=0.001 s)	1,000
	Starting speed of automatic return	Sets the starting speed for automatic return operation. [Setting range] 0 to $1,000,000 \mathrm{~Hz}$	500

- Example of automatic return operation

memo - Automatic return operation will not be executed immediately after turning on the DC power supply or executing the configuration command.
- If an alarm generates while the motor is in a non-excitation state, the automatic return operation will not be executed normally.

7-4 Stop operation

STOP action

When the STOP input is turned ON or STOP is commanded via RS-485 communication while the motor is operating, the motor will stop.
The stopping mode is determined by the setting of the "STOP input action" parameter.
For example, the operation when setting "STOP input action" parameter to "Deceleration stop" is shown in the figure.

* The deceleration time is determined by the setting of "Deceleration" in the operation data.

Hardware overtravel

Hardware overtravel is the function that limits the operation range by installing the limit sensor (\pm LS $)$ at the upper and lower limit of the operation range.
If the "Hardware overtravel" parameter is set to "Enable," the motor can be stopped when detecting the limit sensor. The stopping mode is determined by the setting of "Overtravel action" parameter.
The operation example is shown in the figure.

- Immediate stop

- Decelerate stop

Related parameter

MEXEO2 tree view	Parameter name	Description	Initial value
I/O	Hardware overtravel	Sets whether to enable or disable hardware overtravel detection using \pm LS inputs. [Setting range] 0: Disable 1: Enable	1
	Overtravel action	Sets the motor stop action to take place upon the occurrence of overtravel. LSetting range] 0:Immediate stop $1:$ Decelerate stop	0

Note When the "Overtravel action" parameter is set to "Decelerate stop," consider the distance from the start of deceleration to the stop, and do not allow a load to contact with the edge of the mechanism.

Software overtravel

The software overtravel is a function that limits the range of movement using the parameter.
If the "Software overtravel" parameter is set to "Enable," the motor can be stopped when exceeding the software limit. The stopping mode is determined by the setting of "Overtravel action" parameter. For example, setting the "Overtravel action" parameter to "Decelerate stop" can decelerate the motor according to the deceleration rate and stop it at the software limit.
The figures below show the motor movement when an operation exceeding the software limit is started during operation.

- Immediate stop

- Decelerate stop

Related parameter

MEXEO2 tree view	Parameter name	Description	Initial value
I/O	Overtravel action	Sets the motor stop action to take place upon the occurrence of overtravel. [Setting range] 0: Immediate stop 1: Decelerate stop	0
	Software overtravel	Sets whether to enable or disable software overtravel detection using soft limits. [Setting range] 0: Disable 1: Enable	1
	Positive software limit	Sets the value of soft limit in positive direction. [Setting range] $-8,388,608$ to $8,388,607$ step	$8,388,607$
	Negative software limit	Sets the value of soft limit in negative direction. [Setting range] $-8,388,608$ to $8,388,607$ step	$-8,388,608$

memo - Software overtravel will become effective after the position origin is set. Refer to p .198 for setting the position origin.

- When the value of the software limit is changed while the motor is operating, the motor will stop according to the setting of the "Overtravel action" parameter.

Escape from the limit sensor

It is possible to escape in the negative direction when detecting the positive direction limit, and possible to escape in the positive direction when detecting the negative direction limit.
The table shows the types of operation that can be used when escaping from the limit.

Types of operation	Limit sensors (\pm LS)	Software limit
Positioning operation	Will not operate (unable to escape)	
Continuous operation Test operation Return-to-home operation	Allowed to operate (able to escape)	

8 Coordination management

8-1 Position coordinate management

The driver manages the motor position information.

Position origin for the driver

The position origin will be set whenever one of the following operations is executed:

- Return-to-home operation
- P-PRESET input is turned ON

- When the position origin has not been set

If the "Return-to-home incomplete alarm" parameter is set to "Enable," positioning operations can be prohibited while the position origin has not been set.
The return-to-home incomplete alarm will generate if the START input, SSTART input or the MS0 to MS5 inputs are turned ON while the position origin has not been set. Refer to p. 144 for alarm.

Related parameter

MEXEO2 tree view	Parameter name	Description	Initial value
Alarm	Return-to-home incomplete alarm	When the positioning operation is started while the position origin has not been set, selects whether the alarm generates or not. lSetting range] 0: Disable 1: Enable	0

8-2 Wrap function

The wrap function is a function that resets the command position or multi-rotation data to 0 whenever the command position exceeds the set value by the "Wrap setting range" parameter.
The command position varies in a range of " 0 to (wrap setting value-1)."
Related parameter

MEXE02 tree view	Parameter name	Description	Initial value
Coordinates	Wrap setting	Sets whether to enable or disable wrap function. [Setting range] $0:$ Disable $1:$ Enable	0
	Wrap setting range	Sets the wrap setting range. [Setting range] 1 to $8,388,607$ step	1,000

memo When setting the "Wrap setting" parameter to "Enable," the software overtravel will be disabled. (It is disabled even when setting the "Software overtravel" parameter to "Enable.")

Setting condition of wrap function

Condition 1: $\frac{\text { Electronic gear } B \times 1,000}{\text { Electronic gear } A \times 50}=A n$ integer
Condition 2: Wrap setting value $\times \frac{\text { Electronic gear } A \times 50}{\text { Electronic gear } B \times 1,000}=A n$ integer

The wrap setting error warning will generate when not meeting these formulas.
memo When not meeting these formulas while the "Wrap setting" parameter is "Enable," the wrap setting error warning will generate. If the power is turned on again or the configuration is executed while the wrap setting error warning is present, the wrap setting error alarm will generate.

Example for wrap function

Example of operation when the positioning operation is performed in the following conditions.

- Wrap setting range : 3,600
- Resolution $\quad: 1,000 \mathrm{P} / \mathrm{R}$ (electronic gear $\mathrm{A}=1$, electronic gear $\mathrm{B}=1$)
- Command position : 900

Condition 1: $\frac{\text { Electronic gear } B \times 1,000}{\text { Electronic gear } A \times 50}=\frac{1 \times 1,000}{1 \times 50}=20$
Condition 2: Wrap setting value $\times \frac{\text { Electronic gear } A \times 50}{\text { Electronic gear } B \times 1,000}=3,600 \times \frac{1 \times 50}{1 \times 1,000}=180$
The calculation result of these two formulas is an integer and this meets the setting condition. Following tables are examples when the positioning operation is performed from 900 steps of the command position.

6
 Method of control via Modbus RTU (RS-485 communication)

This part explains how to control from the host controller via RS-485 communication. The protocol for theRS-485 communication is the Modbus protocol.
Table of contents
1 Guidance 202
2 Communication specifications 208
3 Setting the switches 211
3-1 Setting the AC power input 211
3-2 Setting the DC power input 213
4 Setting of RS-485 communication 215
5 Communication mode and communication timing 216
5-1 Communication mode 216
5-2 Communication timing 216
6 Message 218
6-1 Query 218
6-2 Response. 220
7 Function code 222
7-1 Reading from a holding register(s) (03h) 222
7-2 Writing to a holding register (06h) 223
7-3 Diagnosis (08h) 224
7-4 Writing to multiple holding registers (10h) 225
8 Register address list 227
8-1 Operation commands 227
8-2 Maintenance commands 229
8-3 Monitor commands 230
8-4 Parameter R/W commands 233
9 Group send 244
10 Setting example of the operation 246
10-1 Positioning operation 246
10-2 Continuous operation 249
10-3 Return-to-home operation 251
11 Detection of communication errors 253
11-1 Communication errors 253
11-2 Alarms and warnings. 253
12 Timing charts 254

1 Guidance

If you are new to the AR Series FLEX built-in controller type, read this section to understand the operating methods along with the operation flow.
This is an example how to set operation data and parameters to the driver and operate the motor using a host controller.

- Operation condition

Here, the motor is assumed to be operated under the following conditions.

[^11]Note Before operating the motor, check the condition of the surrounding area to ensure safety.

STEP $1 \quad$ Check the installation and connection

AC power input

[^12]
■ DC power input

*1 This cable is provided as our product. When the length of the motor cable is not enough, purchase it separately.
*2 These cables are provided as our products. Purchase them separately.

STEP 2 Setting the switches

Set as shown in the table with the switches. The status becomes as shown in the following figures after setting.

- AC power input

Setting item	Switch	Factory setting
Protocol: Modbus protocol	Turn No.2 of SW4 ON	OFF
Address number: 1	Turn No.1 of SW4 OFF, set ID to 1	No.1 of SW4: OFF, ID: 0
Transmission rate: 115,200 bps	Set SW2 to 4	7
Termination resistor: ON	Set Nos.1 and 2 of TERM. ON	OFF

- Driver front side

Driver bottom side

DC power input

Setting item	Switch	Factory setting
Protocol: Modbus protocol	Turn No.2 of SW3 ON	OFF
Address number: 1	Turn No.1 of SW3 OFF, set SW1 to 1	No.1 of SW3: OFF, SW1:0
Transmission rate: 115,200 bps	Set SW2 to 4	7
Termination resistor: ON	Set No.4 of SW3 ON	OFF

- Driver front side

- Driver bottom side

Function setting switch (SW3) No.1: Sets the address number. No.2: Sets the protocol. No.3: Not used.
No.4: Sets the termination resistor (120 Ω).

STEP 3 Turn on the power and check the communication parameters

Check the following communication parameters with the MEXEO2.
If communication cannot be established, review the communication parameters of the driver.

MEXE02 tree view	Parameter name
Communication	Communication parity [Initial value: 1 (even number)]
	Communication stop bit [Initial value: $0(1$ bit)]
	Transmission waiting time [Initial value: $100(10.0 \mathrm{~ms})]$

memo Set the transmission interval of frames sent from the client to be longer than the silent interval of the driver. When the transmission rate is $115,200 \mathrm{bps}$, the silent interval of the driver is 2.5 ms .

STEP 4 Cycle the power

The switches of the driver and the communication parameters are enabled after the power is cycled.

STEP 5 Send a message and operate the motor

As an example, here is a description how to execute the following positioning operation.

1. Send the following five queries and set the operation data.

- Operation mode of operation data No. 0

Field name		Data	Description
Server address		01h	Server address 1
Function code		06h	Writing to a holding register
Data	Register address (upper)	05h	Operation mode No. 0 (0501h)
	Register address (lower)	01h	
	Value written (upper)	00h	Incremental (0000h)
	Value written (lower)	00h	
Error check (lower)		D8h	Calculation result of CRC-16
Error check (upper)		C6h	

- Position of operation data No. 0

Field name		Data	Description
Server address		01h	Server address 1
Function code		06h	Writing to a holding register
Data	Register address (upper)	04h	Position No. 0 (0401h)
	Register address (lower)	01h	
	Value written (upper)	21h	8,500 steps (2134h)
	Value written (lower)	34h	
Error check (lower)		COh	Calculation result of CRC-16
Error check (upper)		BDh	

- Operating speed of operation data No. 0

Field name		Data	Description
Server address		01h	Server address 1
Function code		06h	Writing to a holding register
Data	Register address (upper)	04h	Operating speed No. 0 (0481h)
	Register address (lower)	81h	
	Value written (upper)	07h	$2,000 \mathrm{~Hz}$ (07DOh)
	Value written (lower)	DOh	
Error check (lower)		DBh	Calculation result of CRC-16
Error check (upper)		7Eh	

- Acceleration of operation data No. 0

Field name		Data	Description
Server address		01h	Server address 1
Function code		06h	Writing to a holding register
Data	Register address (upper)	06h	Acceleration No. 0 (0601h)
	Register address (lower)	01h	
	Value written (upper)	05h	$1.5 \mathrm{~ms} / \mathrm{kHz}$ (05DCh)
	Value written (lower)	DCh	
Error check (lower)		DAh	Calculation result of CRC-16
Error check (upper)		4Bh	

- Deceleration of operation data No. 0

Field name		Data	Description
Server address		01h	Server address 1
Function code		06h	Writing to a holding register
Data	Register address (upper)	06h	Deceleration No. 0 (0681h)
	Register address (lower)	81h	
	Value written (upper)	05h	$1.5 \mathrm{~ms} / \mathrm{kHz}$ (05DCh)
	Value written (lower)	DCh	
Error check (lower)		DBh	Calculation result of CRC-16
Error check (upper)		A3h	

2. Send the following two queries and perform operation.

- START input ON (To start operation for operation data No.0)

Field name		Data	Description
Server address		01h	Server address 1
Function code		06h	Writing to a holding register
Data	Register address (upper)	00h	Driver input command (007Dh)
	Register address (lower)	7Dh	
	Value written (upper)	00h	START ON (0008h)
	Value written (lower)	08h	
Error check (lower)		18h	Calculation result of CRC-16
Error check (upper)		14h	

- START input OFF

Field name		Data	Description
Server address		01h	Server address1
Function code		06h	Writing to a holding register
Data	Register address (upper)	00h	Driver input command (007Dh)
	Register address (lower)	7Dh	
	Value written (upper)	00h	START OFF (0000h)
	Value written (lower)	00h	
Error check (lower)		19h	Calculation result of CRC-16
Error check (upper)		D2h	

3. Check the motor rotates according to the setting.

STEP $6 \quad$ Were you able to operate the motor properly?

How did it go? Were you able to operate the motor properly? If the motor does not function, check the following points:

- Is any alarm present?
- Are the power supply, the motor, and the RS-485 cable connected securely?
- Are the server address, transmission rate and termination resistor set correctly?
- Is the C-DAT/C-ERR LED turned off? Or is it lit in red? (A communication erro has occured.)

2 Communication specifications

Electrical characteristics	In conformance with EIA-485, straight cable Use a twisted pair cable (TIA/EIA-568B CAT5e or higher is recommended) and keep the total wiring distance including extension to $50 \mathrm{~m}(164 \mathrm{ft}$.) or less. *
Communication mode	Half duplex Asynchronous mode (data: 8 bits, stop bit: 1 bit/2 bits, parity: none/even number/odd number)
Transmission rate	Selectable from 9,600 bps, $19,200 \mathrm{bps}, 38,400 \mathrm{bps}, 57,600 \mathrm{bps}$ and 115,200 bps.
Protocol	Modbus RTU mode
Connection figure	Up to 31 drivers can be connected to a single host controller.

* If the motor cable or power supply cable generates an undesirable amount of noise depending on the wiring or configuration, shield the cable or install a ferrite core.

■ Connection example

The figure shows the model for AC power input.

- Internal circuit diagram

- AC power input

[^13]- DC power input

*1 Termination resistor 120Ω
*2 Turn the termination resistor ON (SW3-No.4).
*3 Common with GND of CN1 (Non-isolated)

3 Setting the switches

Switches differ in the AC power input driver and the DC power input driver. Set properly.

3-1 Setting the AC power input

The figures show the status of factory setting.

- Driver front side - Driver bottom side

Note
When setting any switch, turn off the main power supply and the 24 VDC power supply of the driver and wait for the CHARGE LED to turn off before doing so. The residual voltage may cause electric shock.
memo The set switches are enabled after the 24 VDC power supply is turned on again.

- Protocol

Using the SW4-No. 2 of the function setting switch to ON. The Modbus protocol is selected.
Factory setting OFF

SW4-No.2	Protocol
ON	Modbus RTU mode
OFF	Connecting with network converter

Address number (Server address)

Using the address number setting switch (ID) and SW4-No. 1 of the function setting switch, set the address number (server address). Make sure each address number (server address) you set for each driver is unique.
Address number (server address) 0 is reserved for broadcasting, so do not use this address.
Factory setting ID: 0, SW4-No.1: OFF

ID	SW4-No. 1	Address number (Server address)	ID	SW4-No. 1	Address number (Server address)
0	OFF	Not used	0	ON	16
1		1	1		17
2		2	2		18
3		3	3		19
4		4	4		20
5		5	5		21
6		6	6		22
7		7	7		23
8		8	8		24
9		9	9		25
A		10	A		26
B		11	B		27
C		12	C		28
D		13	D		29
E		14	E		30
F		15	F		31

Termination resistor

Set the termination resistor (120Ω) of RS-485 communication on the driver that is farthest away (at the end) from the host controller.
Turn the termination resistor setting switch (TERM.-Nos. 1 and 2) ON to set the termination resistor for RS-485 communication (120Ω).

Factory setting Nos. 1 and 2: Both OFF (termination resistor disabled)

TERM.-Nos. 1 and 2	Termination resistor (120Ω)
Both are OFF	Disabled
Both are ON	Enabled

memo If only one of No. 1 or No. 2 is turned ON, a communication error may occur.

3-2 Setting the DC power input

The figures show the status of factory setting.

- Driver front side

- Driver bottom side

Function setting switch (SW3)
No.1: Sets the address number.
No.2: Sets the protocol.
No.3: Not used.
No.4: Sets the termination resistor (120 Ω).

memo Be sure to turn off the driver power supply before setting the switches. If the switches are set while the power is still on, the new switch settings will not become effective until the driver power supply is cycled.

Protocol

Using the SW3-No. 2 of the function setting switch to ON. The Modbus protocol is selected.
Factory setting OFF

SW3-No.2	Protocol
ON	Modbus RTU mode
OFF	Connecting with network converter

Transmission rate

Using the transmission rate setting switch (SW2), set the transmission rate.
The transmission rate to be set should be the same as the transmission rate of the host controller.

Factory setting 7

SW2	Transmission rate (bps)
0	9,600
1	19,200
2	38,400
3	57,600
4	115,200
5,6	Not used
7	Network converter
8 to F	Not used

memo Do not set SW2 to positions 5, 6, and 8 to F .

Address number (Server address)

Using the address number setting switch (SW1) and SW3-No. 1 of the function setting switch, set the address number (server address). Make sure each address number (server address) you set for each driver is unique.
Address number (server address) 0 is reserved for broadcasting, so do not use this address.
Factory setting SW1:0, SW3-No.1: OFF

SW1	SW3-No. 1	Address number (Server address)	SW1	SW3-No. 1	Address number (Server address)
0	OFF	Not used	0	ON	16
1		1	1		17
2		2	2		18
3		3	3		19
4		4	4		20
5		5	5		21
6		6	6		22
7		7	7		23
8		8	8		24
9		9	9		25
A		10	A		26
B		11	B		27
C		12	C		28
D		13	D		29
E		14	E		30
F		15	F		31

Termination resistor

Set the termination resistor (120Ω) of RS-485 communication on the driver that is farthest away (at the end) from the host controller.
Turn the termination resistor setting switch (SW3-No.4) ON to set the termination resistor for RS-485 communication (120 Ω).
Factory setting OFF (termination resistor disabled)

SW3-No.4	Termination resistor (120Ω)
OFF	Disabled
ON	Enabled

* Common with GND of CN1 (Non-isolated)

4 Setting of RS-485 communication

Set parameters required RS-485 communication first.
When a parameter is changed, the timing to update the new value varies depending on the parameter. Refer to
"Communication parameter" on p. 120 for the timing to update each parameter.
Parameters set with the MEXEO2 or OPX-2A
Set the following parameters using the MEXE02 or OPX-2A since they cannot be set via RS-485 communication.

MEXE02 tree view	Parameter name	Description	Initial value
Communication	Communication parity	Sets the parity of RS-485 communication. [Setting range] 0 : None 1: Even 2: Odd	1
	Communication stop bit	Sets the stop bit of RS-485 communication. [Setting range] 0: 1 bit 1:2 bits	0
	Transmission waiting time	Sets the transmission waiting time of RS-485 communication. [Setting range] 0 to 10,000 ($1=0.1 \mathrm{~ms}$)	100

Parameters set with the MEXE02, OPX-2A or via RS-485 communication
Set the following parameters using the MEXE02, OPX-2A or via RS-485 communication.

MEXE02 tree view	Parameter name	Description	Initial value
Communication	$\begin{array}{l}\text { Communication } \\ \text { timeout }\end{array}$	$\begin{array}{l}\text { Sets the condition in which a communication timeout } \\ \text { occurs in RS-485 communication. It is not monitored } \\ \text { when the set value is 0. } \\ \text { [Setting range] } \\ 0: \text { Not monitored } \\ 1 \text { to } 10,000 \text { ms }\end{array}$	0

5 Communication mode and communication timing

5-1 Communication mode

Modbus protocol communication is based on the single-client/multiple-server method. Only the client can issue a query (command). Each server executes the process requested by query and returns a resonse massage. The AR Series supports only the RTU mode as a transmission mode. It does not support the ASCII mode. Under this protocol, messages are sent in one of two methods.

- Unicast mode

The client sends a command to only one server.
The server executes the process and returns a response.

- Broadcast mode

If the server address 0 is specified on the client, the client can send a command to all servers. Each server executes the process, but does not return a response.

5-2 Communication timing

The communication time monitored by the driver and the communication timing of the client are as follows.

Character	Name	Description
Tb1	Communication timeout (Driver)	The driver monitors an interval between received queries. If no query could be received after the time set with the "Communication timeout" parameter, an alarm of Communication timeout is generated. When normal messages including messages to other servers were received, an alarm of Communication timeout is not generated.
Tb2	Transmission waiting time (Driver)	This is the amount of time from when the driver receives a query from the client to when it starts sending a response. Set using the "Transmission waiting time" parameter.
Tb3	Broadcasting interval (Client)	This is the amount of time until the client sends the next query in broadcasting. A time equivalent to or longer than the silent interval (C3.5) plus 5 ms is required.
Tb4	Transmission waiting time (Client)	This is the amount of time from when the client receives the response to when it sends the next query (setting on the client side). Set so that it is equal to or longer than the time of the silent interval (C3.5).
C3.5	Silent interval	This is the amount of time to determine the end of a query or response message. An interval equal to or longer than the time of the silent interval (C3.5) is required when the message ends. Refer to the following table for the transmission waiting time.

Transmission waiting time of the "silent interval (C3.5)"

Transmission rate (bps)	Silent interval	Frame interval of client (reference)
9,600	4 ms or more	5.0 ms or more
19,200		
38,400	2.5 ms or more	3.0 ms or more
57,600		
115,200		

The message format is shown below.

6-1 Query

The query message structure is shown below.

Server address	Function code	Data	Error check
8 bits	8 bits	$\mathrm{N} \times 8$ bits	16 bits

Server address

Specify the server address (unicast mode).
If the server address is set to 0 , the client can send a query to all servers (broadcast mode).

Function code

The function codes and message lengths supported by the driver are as follows.

Function code	Function	Message length		Broadcast
		Query	Response	
03 h	Reading from a holding register(s)	8	7 to 37	Impossible
06 h	Writing to a holding register	8	8	Possible
08 h	Diagnosis	8	8	Impossible
10 h	Writing to multiple holding registers	11 to 41	8	Possible

Data

Set data associated with the selected function code. The specific data length varies depending on the function code.

Error check

In the Modbus RTU mode, error checks are based on the CRC-16 method. The server calculates a CRC-16 of each received message and compares the result against the error check value included in the message. If the calculated CRC-16 value matches the error check value, the server determines that the message is normal.

- CRC-16 calculation method

1. Calculate an exclusive-OR (XOR) value of the default value of FFFFh and server address (8 bits).
2. Shift the result of step 1 to the right by 1 bit. Repeat this shift until the overflow bit becomes "1."
3. Upon obtaining " 1 " as the overflow bit, calculate an XOR of the result of step 2 and A001h.
4. Repeat steps 2 and 3 until a shift is performed eight times.
5. Calculate an XOR of the result of step 4 and function code (8 bits).

Repeat steps 2 to 4 for all bytes.
The final result gives the result of CRC-16 calculation.

- Example of CRC-16 calculation

The table is a calculation example when setting the server address of the first byte to 02 h and setting the function code of the second byte to 07h.
The result of actual CRC-16 calculation is calculated including the data on and after the third byte.

Description	Result	Overflow digit
Default value in CRC register FFFFh	1111111111111111	-
First byte 02h	0000000000000010	-
XOR with default value FFFFh	1111111111111101	-
First shift to right	0111111111111110	1
XOR with A001h	$\begin{aligned} & 1010000000000001 \\ & 1101111111111111 \end{aligned}$	-
Second shift to right	0110111111111111	1
XOR with A001h	$\begin{aligned} & 1010000000000001 \\ & 1100111111111110 \end{aligned}$	-
Third shift to right	0110011111111111	0
Fourth shift to right	0011001111111111	1
XOR with A001h	$\begin{aligned} & 1010000000000001 \\ & 1001001111111110 \end{aligned}$	-
Fifth shift to right	0100100111111111	0
Sixth shift to right	0010010011111111	1
XOR with A001h	$\begin{aligned} & 1010000000000001 \\ & 1000010011111110 \end{aligned}$	-
Seventh shift to right	0100001001111111	0
Eighth shift to right	0010000100111111	1
XOR with A001h	$\begin{aligned} & 1010000000000001 \\ & 1000000100111110 \end{aligned}$	-
XOR with next byte 07h	$\begin{aligned} & 0000000000000111 \\ & 1000000100111001 \end{aligned}$	-
First shift to right	0100000010011100	1
XOR with A001h	$\begin{aligned} & 1010000000000001 \\ & 1110000010011101 \end{aligned}$	-
Second shift to right	0111000001001110	1
XOR with A001h	$\begin{aligned} & 1010000000000001 \\ & 1101000001001111 \end{aligned}$	-
Third shift to right	0110100000100111	1
XOR with A001h	$\begin{aligned} & 1010000000000001 \\ & 1100100000100110 \end{aligned}$	-
Fourth shift to right	0110010000010011	0
Fifth shift to right	0011001000001001	1
XOR with A001h	$\begin{aligned} & 1010000000000001 \\ & 1001001000001000 \end{aligned}$	-
Sixth shift to right	0100100100000100	0
Seventh shift to right	0010010010000010	0
Eighth shift to right	0001001001000001	0
Result of CRC-16	0001001001000001	-

6-2 Response

Server-returned responses are classified into three types: normal response, no response, and exception response. The response message structure is the same as the query message structure.

Server address	Function code	Data	Error check
8 bits	8 bits	$\mathrm{N} \times 8$ bits	16 bits

- Normal response

Upon receiving a query from the client, the server executes the requested process and returns a response corresponding th the function code.

■ No response
The server may not return a response to a query sent by the client. This condition is referred to as "No response." The causes of no response are explained below.

- Transmission error

The server discards the query and does not return a response if any of the following transmission errors is detected.

Cause of transmission error	Description
Framing error	Stop bit 0 was detected.
Parity error	A mismatch with the specified parity was detected.
Mismatched CRC	The calculated value of CRC-16 was found not matching the error check value.
Invalid message length	The message length exceeded 256 bytes.

- Other than transmission error

A response may not be returned without any transmission error being detected.

Cause	Description
Broadcast	If the query was broadcast, the server executes the requested process but does not return a response.
Mismatched server address	The server address in the query was found not matching the server address of the driver.

- Exception response

An exception response is returned if the server cannot execute the process requested by the query. Appended to this response is an exception code indicating why the process cannot be executed. The message structure of exception response is as follows.

Server address	Function code	Exception code	Error check
8 bits	8 bits	8 bits	16 bits

- Function code

The function code in the exception response is a sum of the function code in the query and 80 h .

Function code of query	Exception response
03 h	83 h
06 h	86 h
08 h	88 h
10 h	90 h

- Example of exception response

Client

Server address		01h	Query	
Function code		10h	Response	
Data	Register address (upper)	02h		
	Register address (lower)	42h		
	Number of registers (upper)	00h		
	Number of registers (lower)	02h		
	Number of data bytes	04h		
	Value written to register address (upper)	00h		
	Value written to register address (lower)	00h		
	Value written to register address+1 (upper)	03h		
	Value written to register address+1 (lower)	20h		
Error check (lower)		6Eh		
Error check (upper)		0Eh		

Server

Server address	01 h
Function code	
Data	Exception code
Error check (lower)	04h
Error check (upper)	C3h

- Exception code

This code indicates why the process cannot be executed.

Exception code	Communication error code	Cause	Description
01h	88h	Invalid function	The process could not be executed because the function code was invalid. - The function code is not supported. - The sub-function code for diagnosis $(08 \mathrm{~h})$ is other than 00h.
02h		Invalid data address	The process could not be executed because the data address was invalid. - The address is not supported (other than 0000h to 1FFFh). - Register address and number of registers are 2000 h or more in total.
03h	8Ch	Invalid data	The process could not be executed because the data was invalid. - The number of registers is 0 or more than 17. - The number of bytes is other than twice the number of registers. - The data length is outside the specified range.
04h	89h 8Ah 8Ch 8Dh	Server error	The process could not be executed because an error occurred at the server. - User I/F communication in progress (89h) - Downloading or initialization is in progress using the MEXEO2 - Downloading, initializing or teaching function is in progress using the OPX-2A - Non-volatile memory processing in progress (8Ah) - Internal processing is in progress. (S-BSY is ON.) - An EEPROM error alarm is present. - Outside the parameter setting range (8 Ch) The value write is outside the setting range. - Command execute disable (8Dh)

7 Function code

This chapter explains the function codes supported by the AR Series drivers.
Note that the function code cannot be executed if function codes other than those introduced here are sent.

7-1 Reading from a holding register(s) (03h)

This function code is used to read a register (16 bits). Up to 16 successive registers (16×16 bits) can be read.
Read the upper and lower data at the same time. If they are not read at the same time, the value may be invalid.
If multiple holding registers are read, they are read in order of register addresses.

- Example of read

Read operation data for positions Nos. 1 and 2 of server address 1 .

Description	Register address	Value read	Corresponding decimal
Operation data position No.1 (upper)	0402 h	0000 h	10,000
Operation data position No.1 (lower)	0403 h	2710 h	
Operation data position No.2 (upper)	0404 h	FFFFh	$-10,000$
Operation data position No.2 (lower)	0405 h	D8F0h	

- Query

Field name		Data	Description
Server address		01h	Server address 1
Function code		03h	Reading from holding registers
Data	Register address (upper)	04h	Register address to start reading from
	Register address (lower)	02h	
	Number of registers (upper)	00h	Number of registers to be read from the starting register address (4 registers $=0004 \mathrm{~h}$)
	Number of registers (lower)	04h	
Error check (lower)		E4h	Calculation result of CRC-16
Error check (upper)		F9h	

- Response

Field name		Data	Description
Server address		01h	Same as query
Function code		03h	Same as query
Data	Number of data bytes	08h	Twice the number of registers in the query
	Value read from register address (upper)	00h	Value read from register address 0402h
	Value read from register address (lower)	00h	
	Value read from register address+1 (upper)	27h	Value read from register address 0403h
	Value read from register address+1 (lower)	10h	
	Value read from register address+2 (upper)	FFh	Value read from register address 0404h
	Value read from register address+2 (lower)	FFh	
	Value read from register address +3 (upper)	D8h	Value read from register address 0405h
	Value read from register address +3 (lower)	FOh	
Error check (lower)		08h	Calculation result of CRC-16
Error check (upper)		A3h	

7-2 Writing to a holding register (06h)

This function code is used to write data to a specified register address.
However, since the result combining the upper and lower may be outside the data range, write the upper and lower at the same time using the "Writing to multiple holding registers (10h)."

Example of write

Write 80 (50h) as speed filter to server address 2.

Description	Register address	Value written	Corresponding decimal
Speed filter	024 Bh	50 h	80

- Query

Field name		Data	Description
Server address	02 h	Server address 2	
	Register address (upper)	02 h	Register address to be written
	Register address (lower)	4 Bh	
	Value written (upper)	00 h	Value written to the register address
	Value written (lower)	50 h	
Error check (lower)		F8h	Calculation result of CRC-16
Error check (upper)			

- Response

Field name		Data	Description
Server address		02h	Same as query
Function code		06h	Same as query
Data	Register address (upper)	02h	Same as query
	Register address (lower)	4Bh	
	Value written (upper)	00h	Same as query
	Value written (lower)	50h	
Error check (lower)		F8h	Calculation result of CRC-16
Error check (upper)		6Bh	

7-3 Diagnosis (08h)

This function code is used to diagnose the communication between the client and server. Arbitrary data is sent and the returned data is used to determine whether the communication is normal. 00h (reply to query) is the only subfunction supported by this function code.

Example of diagnosis

Send arbitrary data (1234h) to the server.

- Query

Field name		Data	Description
Server address		03 h	Server address 3
Function code	08 h	Diagnosis	
	Sub-function code (upper)	00 h	Return the query data
	Sub-function code (lower)	00 h	
	Data value (upper)	12 h	Arbitrary data (1234h)
	Data value (lower)	34 h	
Error check (lower)		Calculation result of CRC-16	
Error check (upper)			

- Response

Field name	Data	Description	
Server address			03 h
Same as query			
Function code	08 h	Same as query	
	Sub-function code (upper)	00 h	Same as query
	Sub-function code (lower)	00 h	
	Data value (upper)	12 h	Same as query
	Data value (lower)	34 h	
Error check (lower)		ECh	Same as query
Error check (upper)		9 Eh	

7-4 Writing to multiple holding registers (10h)

This function code is used to write data to multiple successive registers. Up to 16 registers can be written. Write the data to the upper and lower at the same time. If not, an invalid value may be written.
Registers are written in order of register addresses. Note that even when an exception response is returned because some data is invalid as being outside the specified range, etc., other data may have been written properly.

- Example of write

Set the following data as acceleration Nos. 2 to 4 as part of operation data at server address 4 .

Description	Register address	Value written	Corresponding decimal
Operation data acceleration No. 2 (upper)	0604h	0000h	10,000
Operation data acceleration No. 2 (lower)	0605h	2710h	
Operation data acceleration No. 3 (upper)	0606h	0000h	20,000
Operation data acceleration No. 3 (lower)	0607h	4E20h	
Operation data acceleration No. 4 (upper)	0608h	0007h	500,000
Operation data acceleration No. 4 (lower)	0609h	A120h	

- Query

Field name		Data	Description
Server address		04h	Server address 4
Function code		10h	Writing to multiple holding registers
Data	Register address (upper)	06h	Register address to start writing from
	Register address (lower)	04h	
	Number of registers (upper)	00h	Number of registers to be written from the starting register address (6 registers=0006h)
	Number of registers (lower)	06h	
	Number of data bytes	OCh	Twice the number of registers in the command
	Value written to register address (upper)	00h	Value written to register address 0604h
	Value written to register address (lower)	00h	
	Value written to register address+1 (upper)	27h	Value written to register address 0605h
	Value written to register address+1 (lower)	10h	
	Value written to register address+2 (upper)	00h	Value written to register address 0606h
	Value written to register address+2 (lower)	00h	
	Value written to register address+3 (upper)	4Eh	Value written to register address 0607h
	Value written to register address+3 (lower)	20h	
	Value written to register address+4 (upper)	00h	Value written to register address 0608h
	Value written to register address+4 (lower)	07h	
	Value written to register address+5 (upper)	A1h	Value written to register address 0609h
	Value written to register address+5 (lower)	20h	
Error check (lower)		1Dh	Calculation result of CRC-16
Error check (upper)		A9h	

- Response

Field name		Data	Description
Server address		04h	Same as query
Function code		10h	Same as query
Data	Register address (upper)	06h	Same as query
	Register address (lower)	04h	
	Number of registers (upper)	00h	Same as query
	Number of registers (lower)	06h	
Error check (lower)		01h	Calculation result of CRC-16
Error check (upper)		17h	

8 Register address list

All data used by the driver is 32-bit wide. Since the register for the Modbus protocol is 16 -bit wide, one data is described by two registers.
Since the address assignment is big endian, the even number addresses become the upper and the odd number addresses become the lower.

8-1 Operation commands

Commands related to motor operation. Operation commands are not saved in the non-volatile memory.

Register address		Name	Description	READ/ WRITE	Setting range
Dec	Hex				
48	0030h	Group (upper)	Sets the address number for the group send.	R/W	-1 : Individual (No group setting) 1 to 31: Group address (Address number of parent server)
49	0031h	Group (lower)			
124	007Ch	Driver input command (upper)	Sets the input command to the driver.	R/W	Refer to p. 228.
125	007Dh	Driver input command (lower)			
126	007Eh	Driver output command (upper)	Reads the output status of the driver.	R	Refer to p. 228.
127	007Fh	Driver output command (lower)			

■ Group (0030h/0031h)
Multiple servers are made into a group and a query is sent to all servers in the group at once. Refer to p .244 for group details. The initial value is -1 . When setting a group, read/write to the upper and lower at the same time.

Address (Hex)	Description of address *							
0030h	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
	[FFFFh]							
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	[FFFFh]							

* []: Initial value

Address (Hex)	Description of address *							
0031h	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
	1 to 31: Sets a group address. [FFFFh]							
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	1 to 31: Sets a group address. [FFFFh]							

[^14]
■ Driver input command (007Ch/007Dh)

These are the driver input signals that can be accessed via RS-485 communication. Refer to p. 92 for each input signal.

Address (Hex)	Description of address							
007Ch	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
	-	-	-	-	-	-	-	-
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	-	-	-	-	-	-	-	-

Address (Hex)	Description of address *							
007Dh	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
	NET-IN15 [RVS]	NET-IN14 [FWD]	NET-IN13 [-JOG]	NET-IN12 [+JOG]	NET-IN11 [SSTART]	NET-IN10 [MS2]	NET-IN9 [MS1]	NET-IN8 [MS0]
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	NET-IN7 [not used]	NET-IN6 [FREE]	NET-IN5 [STOP]	NET-IN4 [HOME]	NET-IN3 [START]	NET-IN2 [M2]	NET-IN1 [M1]	NET-IN0 [M0]

* []: Initial value

Driver output command (007Eh/007Fh)

These are the driver output signals that can be received via RS-485 communication. Refer to p. 98 for each output signal.

Address (Hex)	Description of address							
007Eh	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
	-	-	-	-	-	-	-	-
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	-	-	-	-	-	-	-	-

Address (Hex)	Description of address *							
007Fh	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
	NET-OUT15 [TLC]	NET-OUT14 [END]	NET-OUT13 [MOVE]	NET-OUT12 [TIM]	NET-OUT11 [AREA3]	NET-OUT10 [AREA2]	NET-OUT9 [AREA1]	NET-OUT8 [S-BSY]
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	NET-OUT7 [ALM]	NET-OUT6 [WNG]	NET-OUT5 [READY]	NET-OUT4 [HOME-P]	NET-OUT3 [START_R]	NET-OUT2 [M2_R]	NET-OUT1 [M1_R]	$\begin{gathered} \text { NET-OUTO } \\ {[\mathrm{MO} \text { _R] }} \end{gathered}$

* []: Initial value

8-2 Maintenance commands

These commands are used to reset alarms and warnings. They are also used to execute the batch processing for the non-volatile memory. All commands can be written (WRITE). Executes when writing from 0 to 1.

Register address		Name	Description	Setting range
Dec	Hex			
384	0180h	Reset alarm (upper)	Resets the alarms that are present. Some alarms cannot be reset with the "reset alarm."	0, 1
385	0181h	Reset alarm (lower)		
388	0184h	Clear alarm records (upper)	Clears alarm records.	
389	0185h	Clear alarm records (lower)		
390	0186h	Clear warning records (upper)	Clears warning records.	
391	0187h	Clear warning records (lower)		
392	0188h	Clear communication error records (upper)	Clears the communication error records.	
393	0189h	Clear communication error records (lower)		
394	018Ah	P-PRESET execute (upper)	Presets the command position.	
395	018Bh	P-PRESET execute (lower)		
396	018Ch	Configuration (upper)	Executes the parameter recalculation and the setup.	
397	018Dh	Configuration (lower)		
398	018Eh	All data initialization (upper)*	Resets the operation data and parameters saved in the non-volatile memory, to their defaults.	
399	018Fh	All data initialization (lower) *		
400	0190h	Batch non-volatile memory read (upper)	Reads the parameters saved in the non-volatile memory, to the RAM. All operation data and parameters previously saved in the RAM are overwritten.	
401	0191h	Batch non-volatile memory read (lower)		
402	0192h	Batch non-volatile memory write (upper)	Writes the parameters saved in the RAM to the nonvolatile memory. The non-volatile memory can be rewritten approximately 100,000 times.	
403	0193h	Batch non-volatile memory write (lower)		

* Communication parity, communication stop bit and transmission waiting time are not initialized. Initialize them using the MEXE02 or OPX-2A.

Configuration (018Ch/018Dh)

Configuration will be executed when all of the following conditions are satisfied:

- An alarm is not present.
- The motor is not operated.
- The MEXEO2 is in other status than downloading, I/O test, test operation or teaching function.
- The OPX-2A is in other modes than the test mode or copy mode.

Shows the driver status before and after executing the configuration.

Item	Configuration is ready to execute	Configuration is executing	Configuration is completed
AC power input: PWR LED DC power input: POWER LED	Lit	Lit	Based on the driver condition.
AC power input: ALM LED DC power input: ALARM LED	OFF	OFF	
Electromagnetic brake	Hold/Release	Hold	
Motor excitation	Excitation/Non-excitation	Non-excitation	
Output signals	Allowed	Indeterminate	Allowed
Input signals		Not allowed	
Sensor inputs			

memo

- The correct monitor value may not return even when the monitor is executed while executing the configuration.
- If the "Automatic return action" parameter is "Enable" while meeting the conditions performing the automatic return operation, the automatic return operation will not perform immediately after executing the configuration.

8-3 Monitor commands

These commands are used to monitor the command position, command speed, alarm and warning records, etc. All commands can be read (READ).

Register address		Name	Description	Setting range
Dec	Hex			
128	0080h	Present alarm (upper)	Monitors the present alarm code.	00h to FFh
129	0081h	Present alarm (lower)		
130	0082h	Alarm record 1 (upper)	Monitors the alarm records.	
131	0083h	Alarm record 1 (lower)		
132	0084h	Alarm record 2 (upper)		
133	0085h	Alarm record 2 (lower)		
134	0086h	Alarm record 3 (upper)		
135	0087h	Alarm record 3 (lower)		
136	0088h	Alarm record 4 (upper)		
137	0089h	Alarm record 4 (lower)		
138	008Ah	Alarm record 5 (upper)		
139	008Bh	Alarm record 5 (lower)		
140	008Ch	Alarm record 6 (upper)		
141	008Dh	Alarm record 6 (lower)		
142	008Eh	Alarm record 7 (upper)		
143	008Fh	Alarm record 7 (lower)		
144	0090h	Alarm record 8 (upper)		
145	0091h	Alarm record 8 (lower)		
146	0092h	Alarm record 9 (upper)		
147	0093h	Alarm record 9 (lower)		

Register address		Name	Description	Setting range
Dec	Hex			
148	0094h	Alarm record 10 (upper)		00h to FFh
149	0095h	Alarm record 10 (lower)		
150	0096h	Present warning (upper)		
151	0097h	Present warning (lower)		
152	0098h	Warning record 1 (upper)	Monitors the warning records.	
153	0099h	Warning record 1 (lower)		
154	009Ah	Warning record 2 (upper)		
155	009Bh	Warning record 2 (lower)		
156	009Ch	Warning record 3 (upper)		
157	009Dh	Warning record 3 (lower)		
158	009Eh	Warning record 4 (upper)		
159	009Fh	Warning record 4 (lower)		
160	00A0h	Warning record 5 (upper)		
161	00A1h	Warning record 5 (lower)		
162	00A2h	Warning record 6 (upper)		
163	00A3h	Warning record 6 (lower)		
164	00A4h	Warning record 7 (upper)		
165	00A5h	Warning record 7 (lower)		
166	00A6h	Warning record 8 (upper)		
167	00A7h	Warning record 8 (lower)		
168	00A8h	Warning record 9 (upper)		
169	00A9h	Warning record 9 (lower)		
170	00AAh	Warning record 10 (upper)		
171	00ABh	Warning record 10 (lower)		
172	00ACh	Communication error code (upper)	Monitors the last received communication	
173	00ADh	Communication error code (lower)	error code.	
174	00AEh	Communication error code record 1 (upper)	Monitors the communication error records that have occurred in the past.	
175	00AFh	Communication error code record 1 (lower)		
176	00B0h	Communication error code record 2 (upper)		
177	00B1h	Communication error code record 2 (lower)		
178	00B2h	Communication error code record 3 (upper)		
179	00B3h	Communication error code record 3 (lower)		
180	00B4h	Communication error code record 4 (upper)		
181	00B5h	Communication error code record 4 (lower)		
182	00B6h	Communication error code record 5 (upper)		
183	00B7h	Communication error code record 5 (lower)		
184	00B8h	Communication error code record 6 (upper)		

[^15]| Register address | | Name | Description | Setting range |
| :---: | :---: | :---: | :---: | :---: |
| Dec | Hex | | | |
| 185 | 00B9h | Communication error code record 6 (lower) | Monitors the communication error records that have occurred in the past. | 00h to FFh |
| 186 | 00BAh | Communication error code record 7 (upper) | | |
| 187 | 00BBh | Communication error code record 7 (lower) | | |
| 188 | 00BCh | Communication error code record 8 (upper) | | |
| 189 | 00BDh | Communication error code record 8 (lower) | | |
| 190 | O0BEh | Communication error code record 9 (upper) | | |
| 191 | 00BFh | Communication error code record 9 (lower) | | |
| 192 | 00COh | Communication error code record 10 (upper) | | |
| 193 | 00C1h | Communication error code record 10 (lower) | | |
| 194 | 00C2h | Present selected data No. (upper) | Monitors the operation data No. currently selected. | 0 to 63 |
| 195 | 00C3h | Present selected data No. (lower) | | |
| 196 | 00C4h | Present operation data No. (upper) | Monitors the operation data No. corresponding to the data used in the current positioning operation. This address is used in linked-motion operation and sequential positioning operation. While the motor is stopped, the last used operation data number is indicated. " -1 " is indicated until the positioning operation is performed after turning the power on. | -1 to 63 |
| 197 | 00C5h | Present operation data No. (lower) | | |
| 198 | 00C6h | Command position (upper) | Monitors the command position. | $\begin{array}{\|l} -2,147,483,648 \text { to } \\ 2,147,483,647 \text { step } \end{array}$ |
| 199 | 00C7h | Command position (lower) | | |
| 200 | 00C8h | Command speed (upper) | Monitors the current command speed. | $\begin{aligned} & -4,500 \text { to }+4,500 \mathrm{r} / \mathrm{min} \\ & \text { +: Forward } \\ & \text {-: Reverse } \\ & \text { 0: Stop } \end{aligned}$ |
| 201 | 00C9h | Command speed (lower) | | |
| 204 | 00CCh | Actual position (upper) | Monitors the actual position. Shows the value that updated the data having set with the electronic gear. | $\begin{aligned} & -2,147,483,648 \text { to } \\ & 2,147,483,647 \text { step } \end{aligned}$ |
| 205 | 00CDh | Actual position (lower) | | |
| 206 | 00CEh | Actual speed (upper) | Monitors the actual speed. | $-4,500$ to $+4,500 \mathrm{r} / \mathrm{min}$ |
| 207 | 00CFh | Actual speed (lower) | | |
| 210 | 00D2h | Remaining dwell time (upper) | Monitors how much of the dwell time used in the linked-motion 2 operation remains. | 0 to 50,000 ms |
| 211 | 00D3h | Remaining dwell time (lower) | | |
| 212 | 00D4h | Direct I/O and electromagnetic brake status (upper) | Monitors the each direct I/O signal and electromagnetic brake status. | Refer to the following table. |
| 213 | 00D5h | Direct I/O and electromagnetic brake status (lower) | | |

Direct I/O and electromagnetic brake status (00D4h/00D5h)

Address (Hex)		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
00D4h	Upper	-	-	-	-	-	-	-	MB
	Lower	-	-	OUT5	OUT4	OUT3	OUT2	OUT1	OUT0
00D5h	Upper	-	-	IN7	IN6	IN5	IN4	IN3	IN2
	Lower	IN1	IN0	-	-	SLIT	HOMES	- LS	+ LS

8-4 Parameter R/W commands

Write or read parameters. All commands can be read and written (READ/WRITE). For details on parameters, refer to p. 110.

Operation data

If the data is changed, a recalculation and setup will be performed after the operation is stopped.

Register address		Name	Setting range	Initial value
Dec	Hex			
$\begin{gathered} 1024 \\ 1025 \\ \text { to } \\ 1150 \\ 1151 \end{gathered}$	$\begin{gathered} \text { 0400h } \\ 0401 \mathrm{~h} \\ \text { to } \\ \text { 047Eh } \\ \text { 047Fh } \end{gathered}$	Position No. 0 (upper) Position No. 0 (lower) to Position No. 63 (upper) Position No. 63 (lower)	-8,388,608 to 8,388,607 step	0
$\begin{gathered} 1152 \\ 1153 \\ \text { to } \\ 1278 \\ 1279 \end{gathered}$	0480h 0481h to 04FEh 04FFh	Operating speed No. 0 (upper) Operating speed No. 0 (lower) to Operating speed No. 63 (upper) Operating speed No. 63 (lower)	0 to 1,000,000 Hz	1,000
$\begin{gathered} 1280 \\ 1281 \\ \text { to } \\ 1406 \\ 1407 \end{gathered}$	$\begin{aligned} & \text { 0500h } \\ & \text { 0501h } \\ & \text { to } \\ & \text { 057Eh } \\ & \text { 057Fh } \end{aligned}$	Operation mode No. 0 (upper) Operation mode No. 0 (lower) to Operation mode No. 63 (upper) Operation mode No. 63 (lower)	0: Incremental 1: Absolute	0
$\begin{gathered} 1408 \\ 1409 \\ \text { to } \\ 1534 \\ 1535 \end{gathered}$	$\begin{aligned} & \text { 0580h } \\ & \text { 0581h } \\ & \text { to } \\ & \text { 05FEh } \\ & \text { 05FFh } \end{aligned}$	Operation function No. 0 (upper) Operation function No. 0 (lower) to Operation function No. 63 (upper) Operation function No. 63 (lower)	0 : Single-motion 1: Linked-motion 2: Linked-motion 2 3: Push	0
$\begin{gathered} 1536 \\ 1537 \\ \text { to } \\ 1662 \\ 1663 \end{gathered}$	$\begin{aligned} & \text { 0600h } \\ & \text { 0601h } \\ & \text { to } \\ & \text { 067Eh } \\ & \text { 067Fh } \end{aligned}$	Acceleration No. 0 (upper) Acceleration No. 0 (lower) to Acceleration No. 63 (upper) Acceleration No. 63 (lower)	$\begin{aligned} & 1 \text { to } 1,000,000 \\ & (1=0.001 \mathrm{~ms} / \mathrm{kHz} \text { or } 1=0.001 \mathrm{~s}) * 1 * 2 \end{aligned}$	1,000
$\begin{gathered} 1664 \\ 1665 \\ \text { to } \\ 1790 \\ 1791 \end{gathered}$	0680h 0681h to 06FEh 06FFh	Deceleration No. 0 (upper) Deceleration No. 0 (lower) to Deceleration No. 63 (upper) Deceleration No. 63 (lower)	$\begin{aligned} & 1 \text { to } 1,000,000 \\ & (1=0.001 \mathrm{~ms} / \mathrm{kHz} \text { or } 1=0.001 \mathrm{~s}) * 1 * 2 \end{aligned}$	1,000
$\begin{gathered} 1792 \\ 1793 \\ \text { to } \\ 1918 \\ 1919 \end{gathered}$	0700h 0701h to 077Eh 077Fh	Push current No. 0 (upper) Push current No. 0 (lower) to Push current No. 63 (upper) Push current No. 63 (lower)	0 to 1,000 ($1=0.1$ \%)	200
$\begin{gathered} 1920 \\ 1921 \\ \text { to } \\ 2046 \\ 2047 \end{gathered}$	0780h 0781h to 07FEh 07FFh	Sequential positioning No. 0 (upper) Sequential positioning No. 0 (lower) to Sequential positioning No. 63 (upper) Sequential positioning No. 63 (lower)	0: Disable 1: Enable	0

Register address		Name	Setting range	Initial value
Dec	Hex			
2048	0800 h	Dwell time No.0 (upper)		0
2049	0801 h	Dwell time No.0 (lower)	to	
to to $50,000(1=0.001 \mathrm{~s})$				
2174	to	087Eh	Dwell time No.63 (upper)	
2175	087Fh	Dwell time No.63 (lower)		

*1 This item is effective when the "Acceleration/deceleration type" parameter is set to "Separate." If this parameter is set to "Common," the values of the "Common acceleration" and "Common deceleration" parameters will be used (initial value: separate).
*2 Acceleration/deceleration rate ($\mathrm{ms} / \mathrm{kHz}$) or acceleration/deceleration time (s) can be selected using "Acceleration/ deceleration unit" parameter. (initial value: acceleration/deceleration rate).

User parameters

When a parameter is changed, the timing for updating the new value varies depending on the parameter. Refer to "Notation rules" on p. 110 for details on update timing.

Register address		Name	Setting range	Initial value	Update
Dec	Hex				
512	0200h	STOP input action (upper)	0: Immediate stop 1: Deceleration stop 2: Immediate stop \& Current OFF 3: Deceleration stop \& Current OFF	1	A
513	0201h	STOP input action (lower)			
514	0202h	Hardware overtravel (upper)	0: Disable 1: Enable	1	A
515	0203h	Hardware overtravel (lower)			
516	0204h	Overtravel action (upper)	0: Immediate stop 1: Deceleration stop	0	A
517	0205h	Overtravel action (lower)			
518	0206h	END signal range (upper)	0 to $180\left(1=0.1^{\circ}\right)$	18	A
519	0207h	END signal range (lower)			
520	0208h	Positioning complete output offset (upper)	-18 to $18\left(1=0.1^{\circ}\right)$	0	A
521	0209h	Positioning complete output offset (lower)			
522	020Ah	AREA1 positive direction position (upper)	-8,388,608 to 8,388,607 step	0	A
523	020Bh	AREA1 positive direction position (lower)			
524	020Ch	AREA1 negative direction position (upper)			
525	020Dh	AREA1 negative direction position (lower)			
526	020Eh	AREA2 positive direction position (upper)			
527	020Fh	AREA2 positive direction position (lower)			
528	0210h	AREA2 negative direction position (upper)			
529	0211h	AREA2 negative direction position (lower)			
530	0212h	AREA3 positive direction position (upper)			
531	0213h	AREA3 positive direction position (lower)			
532	0214h	AREA3 negative direction position (upper)			

Register address		Name	Setting range	Initial value	Update
Dec	Hex				
533	0215h	AREA3 negative direction position (lower)	-8,388,608 to 8,388,607 step	0	A
534	0216h	Minimum ON time for MOVE output (upper)	0 to 255 ms	0	A
535	0217h	Minimum ON time for MOVE output (lower)			
536	0218h	LS contact configration (upper)	0: Make (N.O.) 1: Brake (N.C.)	0	C
537	0219h	LS contact configration (lower)			
538	021Ah	HOMES logic level (upper)			C
539	021Bh	HOMES logic level (lower)			
540	021Ch	SLIT logic level (upper)			C
541	021Dh	SLIT logic level (lower)			
576	0240h	RUN current (upper)	0 to 1,000 (1=0.1 \%)	1,000	A
577	0241h	RUN current (lower)			
578	0242h	STOP current (upper)	0 to 500 (1=0.1 \%)	500	A
579	0243h	STOP current (lower)			
580	0244h	Position loop gain (upper)	1 to 50	10	A
581	0245h	Position loop gain (lower)			
582	0246h	Speed loop gain (upper)	10 to 200	180	A
583	0247h	Speed loop gain (lower)			
584	0248h	Speed loop integral time constant (upper)	100 to 2,000 ($1=0.1 \mathrm{~ms}$)	1,000	A
585	0249h	Speed loop integral time constant (lower)			
586	024Ah	Speed filter (upper)	0 to 200 ms	1	B
587	024Bh	Speed filter (lower)			
588	024Ch	Moving average time (upper)	1 to 200 ms	1	B
589	024Dh	Moving average time (lower)			
640	0280h	Common acceleration (upper)	$\begin{aligned} & 1 \text { to } 1,000,000(1=0.001 \mathrm{~ms} / \mathrm{kHz} \text { or } \\ & 1=0.001 \mathrm{~s})^{*} \end{aligned}$	1,000	B
641	0281h	Common acceleration (lower)			
642	0282h	Common deceleration (upper)	$\begin{aligned} & 1 \text { to } 1,000,000(1=0.001 \mathrm{~ms} / \mathrm{kHz} \text { or } \\ & 1=0.001 \mathrm{~s})^{*} \end{aligned}$	1,000	B
643	0283h	Common deceleration (lower)			
644	0284h	Starting speed (upper)	0 to 1,000,000 Hz	500	B
645	0285h	Starting speed (lower)			
646	0286h	JOG operating speed (upper)	1 to 1,000,000 Hz	1,000	B
647	0287h	JOG operating speed (lower)			
648	0288h	Acceleration/deceleration rate of JOG (upper)	1 to $1,000,000(1=0.001 \mathrm{~ms} / \mathrm{kHz}$ or $1=0.001 \mathrm{~s}$) *	1,000	B
649	0289h	Acceleration/deceleration rate of JOG (lower)			
650	028Ah	JOG starting speed (upper)	0 to $1,000,000 \mathrm{~Hz}$	500	B
651	028Bh	JOG starting speed (lower)			
652	028Ch	Acceleration/deceleration type (upper)	0: Common 1:Separate	1	B
653	028Dh	Acceleration/deceleration type (lower)			
654	028Eh	Acceleration/deceleration unit (upper)	$\begin{aligned} & 0: m s / k H z \\ & 1: s \end{aligned}$	0	C
655	028Fh	Acceleration/deceleration unit (lower)			

[^16]| | Register address | | Name | Setting range | Initial value | Update |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Dec | Hex | | | | |
| | 704 | 02COh | Home-seeking mode (upper) | 0: 2-sensor mode
 1:3-sensor mode
 2: Push mode | 1 | B |
| | 705 | 02C1h | Home-seeking mode (lower) | | | |
| | 706 | 02C2h | Operating speed of homeseeking (upper) | 1 to $1,000,000 \mathrm{~Hz}$ | 1,000 | B |
| | 707 | 02C3h | Operating speed of homeseeking (lower) | | | |
| | 708 | 02C4h | Acceleration/deceleration of home-seeking (upper) | $\begin{aligned} & 1 \text { to } 1,000,000(1=0.001 \mathrm{~ms} / \mathrm{kHz} \\ & \text { or } 1=0.001 \mathrm{~s})^{*} \end{aligned}$ | 1,000 | B |
| | 709 | 02C5h | Acceleration/deceleration of home-seeking (lower) | | | |
| | 710 | 02C6h | Starting speed of home-seeking (upper) | 1 to 1,000,000 Hz | 500 | B |
| | 711 | 02C7h | Starting speed of home-seeking (lower) | | | |
| | 712 | 02C8h | Position offset of home-seeking (upper) | $-8,388,608$ to 8,388,607 step | 0 | B |
| | 713 | 02C9h | Position offset of home-seeking (lower) | | | |
| | 714 | 02CAh | Starting direction of homeseeking (upper) | 0 : Negative direction
 1: Positive direction | 1 | B |
| | 715 | 02CBh | Starting direction of homeseeking (lower) | | | |
| | 716 | 02CCh | SLIT detection with homeseeking (upper) | 0: Disable
 1: Enable | 0 | B |
| | 717 | 02CDh | SLIT detection with homeseeking (lower) | | | |
| | 718 | 02CEh | TIM signal detection with homeseeking (upper) | 0 : Disable
 1: Enable | 0 | B |
| $\stackrel{0}{2}$ | 719 | 02CFh | TIM signal detection with homeseeking (lower) | | | |
| $\begin{aligned} & \text { F } \\ & \text { O } \\ & \text { 앙 } \end{aligned}$ | 720 | 02DOh | Operating current of homeseeking with push-motion (upper) | 0 to 1,000 (1=0.1 \%) | 1,000 | B |
| $\begin{aligned} & \frac{0}{2} \\ & \frac{1}{\mathbf{0}} \\ & \underline{0} \end{aligned}$ | 721 | 02D1h | Operating current of homeseeking with push-motion (lower) | | | |
| ¢ | 768 | 0300h | Overload alarm (upper) | 1 to 300 (1=0.1 s) | 50 | A |
| 3 | 769 | 0301h | Overload alarm (lower) | | | |
| $\begin{aligned} & \overline{\mathrm{O}} \\ & \text { 읃 } \end{aligned}$ | 770 | 0302h | Excessive position deviation alarm at current ON (upper) | 1 to 30,000 ($1=0.01 \mathrm{rev}$) | 300 | A |
| $\xrightarrow[\sim]{0}$ | 771 | 0303h | Excessive position deviation alarm at current ON (lower) | | | |
| Tin | 776 | 0308h | Return-to-home incomplete alarm (upper) | 0 : Disable
 1: Enable | 0 | C |
| $\stackrel{+}{0}$ | 777 | 0309h | Return-to-home incomplete alarm (lower) | | | |
| $\frac{0}{3}$ | 832 | 0340h | Overheat warning (upper) | 40 to $85^{\circ} \mathrm{C}$ | 85 | A |
| 3 | 833 | 0341h | Overheat warning (lower) | | | |
| 亏. | 834 | 0342h | Overload warning (upper) | 1 to 300 ($1=0.1$ s) | 50 | A |
| @ | 835 | 0343h | Overload warning (lower) | | | |
| 묵 | 836 | 0344h | Overspeed warning (upper) | 1 to $5,000 \mathrm{r} / \mathrm{min}$ | 4,500 | A |
| | 837 | 0345h | Overspeed warning (lower) | | | |

Register address		Name	Setting range	Initial value	Update
Dec	Hex				
838	0346h	Overvoltage warning (upper)	AC power input: 120 to 450 V DC power input: 150 to 630$(1=0.1 \mathrm{~V})$	AC power input: 435 DC power input: 630	A
839	0347h	Overvoltage warning (lower)			
840	0348h	Undervoltage warning (upper)	AC power input: 120 to 280 V DC power input: 150 to 630 ($1=0.1 \mathrm{~V}$)	AC power input: 120 DC power input: 180	A
841	0349h	Undervoltage warning (lower)			
842	034Ah	Excessive position deviation warning at current ON (upper)	1 to 30,000 (1=0.01 rev)	300	A
843	034Bh	Excessive position deviation warning at current ON (lower)			
896	0380h	Electronic gear A (upper)	1 to 65,535	1	C
897	0381h	Electronic gear A (lower)			
898	0382h	Electronic gear B (upper)	1 to 65,535	1	C
899	0383h	Electronic gear B (lower)			
900	0384h	Motor rotation direction (upper)	0 : Positive direction=CCW 1: Positive direction=CW	1	C
901	0385h	Motor rotation direction (lower)			
902	0386h	Software overtravel (upper)	0 : Disable 1: Enable	1	A
903	0387h	Software overtravel (lower)			
904	0388h	Positive software limit (upper)	$-8,388,608$ to 8,388,607 step	8,388,607	A
905	0389h	Positive software limit (lower)			
906	038Ah	Negative software limit (upper)	$-8,388,608$ to 8,388,607 step	-8,388,608	A
907	038Bh	Negative software limit (lower)			
908	038Ch	Preset position (upper)	$-8,388,608$ to 8,388,607 step	0	A
909	038Dh	Preset position (lower)			
910	038Eh	Wrap setting (upper)	0: Disable 1: Enable	0	C
911	038Fh	Wrap setting (lower)			
912	0390h	Wrap setting range (upper)	1 to 8,388,607 step	1,000	C
913	0391h	Wrap setting range (lower)			
960	03C0h	Data setter speed display (upper)	0 : Signed 1: Absolute value	0	A
961	03C1h	Data setter speed display (lower)			
962	03C2h	Data setter edit (upper)	0 : Disable 1: Enable	1	A
963	03C3h	Data setter edit (lower)			
4096	1000h	MSO operation No. selection (upper)	0 to 63	0	B
4097	1001h	MSO operation No. selection (lower)			
4098	1002h	MS1 operation No. selection (upper)		1	
4099	1003h	MS1 operation No. selection (lower)		1	
4100	1004h	MS2 operation No. selection (upper)		2	
4101	1005h	MS2 operation No. selection (lower)			
4102	1006h	MS3 operation No. selection (upper)	0 to 63	3	B
4103	1007h	MS3 operation No. selection (lower)			
4104	1008h	MS4 operation No. selection (upper)		4	B

[^17]| | Register address | | Name | Setting range | Initial value | Update |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Dec | Hex | | | | |
| | 4105 | 1009h | MS4 operation No. selection (lower) | 0 to 63 | 4 | B |
| | 4106 | 100Ah | MS5 operation No. selection (upper) | | 5 | B |
| | 4107 | 100Bh | MS5 operation No. selection (lower) | | | |
| | 4108 | 100Ch | HOME-P output function selection (upper) | 0 : Home output
 1: Return-to-home complete output | 0 | A |
| | 4109 | 100Dh | HOME-P output function selection (lower) | | | |
| | 4128 | 1020h | Filter selection (upper) | 0: Speed filter
 1: Moving average filter | 0 | C |
| | 4129 | 1021h | Filter selection (lower) | | | |
| | 4130 | 1022h | Speed difference gain 1 (upper) | 0 to 500 | 45 | A |
| | 4131 | 1023h | Speed difference gain 1 (lower) | | | |
| | 4132 | 1024h | Speed difference gain 2 (upper) | 0 to 500 | 45 | A |
| | 4133 | 1025h | Speed difference gain 2 (lower) | | | |
| | 4134 | 1026h | Control mode (upper) | 0 : Normal mode
 1: Current control mode | 0 | C |
| | 4135 | 1027h | Control mode (lower) | | | |
| | 4136 | 1028h | Smooth drive (upper) | 0 : Disable
 1: Enable | 1 | C |
| | 4137 | 1029h | Smooth drive (lower) | | | |
| | 4160 | 1040h | Automatic return operation (upper) | 0: Disable
 1: Enable | 0 | C |
| | 4161 | 1041h | Automatic return operation (lower) | | | |
| | 4162 | 1042h | Operation speed of automatic return (upper) | 1 to $1,000,000 \mathrm{~Hz}$ | 1,000 | B |
| 0 | 4163 | 1043h | Operation speed of automatic return (lower) | | | |
| $\begin{aligned} & \underset{1}{\infty} \\ & \underset{\sim}{2} \end{aligned}$ | 4164 | 1044h | Acceleration (deceleration) of automatic return (upper) | $\begin{aligned} & 1 \text { to } 1,000,000(1=0.001 \mathrm{~ms} / \mathrm{kHz} \text { or } \\ & 1=0.001 \mathrm{~s})^{*} \end{aligned}$ | 1,000 | B |
| 둥 | 4165 | 1045h | Acceleration (deceleration) of automatic return (lower) | | | |
| $\begin{aligned} & \frac{0}{n} \\ & \frac{0}{3} \end{aligned}$ | 4166 | 1046h | Starting speed of automatic return (upper) | 0 to $1,000,000 \mathrm{~Hz}$ | 500 | B |
| $\frac{\overrightarrow{1}}{\frac{0}{2}}$ | 4167 | 1047h | Starting speed of automatic return (lower) | | | |
| $\stackrel{\square}{\square}$ | 4168 | 1048h | JOG travel amount (upper) | 1 to 8,388,607 step | 1 | B |
| \bigcirc | 4169 | 1049h | JOG travel amount (lower) | | | |
| $\begin{aligned} & \text { O} \\ & \frac{0}{n} \end{aligned}$ | 4224 | 1080h | Excessive position deviation alarm at current OFF (upper) | 1 to 30,000 (1=0.01 rev) | 10,000 | A |
| $\stackrel{\text { 직 }}{\text { c }}$ | 4225 | 1081h | Excessive position deviation alarm at current OFF (lower) | | | |
| PiN | 4352 | 1100h | INO input function selection (upper) | Refer to"Setting range for IN input function selection" on p. 243 . | 3: HOME | C |
| - | 4353 | 1101h | INO input function selection (lower) | | | |
| $\begin{aligned} & 3 \\ & \\ & \hline \end{aligned}$ | 4354 | 1102h | IN1 input function selection (upper) | | 4: START | C |
| $\begin{aligned} & \text { 츰. } \\ & \text { O} \end{aligned}$ | 4355 | 1103h | IN1 input function selection (lower) | | | |

Register address		Name	Setting range	Initial value	Update
Dec	Hex				
4356	1104h	IN2 input function selection (upper)	Refer to "Setting range for IN input function selection" on p. 243 .	48: MO	C
4357	1105h	IN2 input function selection (lower)			
4358	1106h	IN3 input function selection (upper)		49: M1	C
4359	1107h	IN3 input function selection (lower)			
4360	1108h	IN4 input function selection (upper)		50: M2	C
4361	1109h	IN4 input function selection (lower)			
4362	110Ah	IN5 input function selection (upper)		16: FREE	C
4363	110Bh	IN5 input function selection (lower)			
4364	110Ch	IN6 input function selection (upper)		18: STOP	C
4365	110Dh	IN6 input function selection (lower)			
4366	110Eh	IN7 input function selection (upper)		24: ALM-RST	C
4367	110Fh	IN7 input function selection (lower)			
4384	1120h	INO input logic level setting (upper)	$\begin{aligned} & \text { 0: Make (N.O.) } \\ & \text { 1: Brake (N.C.) } \end{aligned}$	0	C
4385	1121h	INO input logic level setting (lower)			
4386	1122h	IN1 input logic level setting (upper)			C
4387	1123h	IN1 input logic level setting (lower)			
4388	1124h	IN2 input logic level setting (upper)			C
4389	1125h	IN2 input logic level setting (lower)			
4390	1126h	IN3 input logic level setting (upper)			C
4391	1127h	IN3 input logic level setting (lower)			
4392	1128h	IN4 input logic level setting (upper)			C
4393	1129h	IN4 input logic level setting (lower)			
4394	112Ah	IN5 input logic level setting (upper)			C
4395	112Bh	IN5 input logic level setting (lower)			
4396	112Ch	IN6 input logic level setting (upper)			C
4397	112Dh	IN6 input logic level setting (lower)			
4398	112Eh	IN7 input logic level setting (upper)			C

Register address		Name	Setting range	Initial value	Update
Dec	Hex				
4399	112Fh	IN7 input logic level setting (lower)	0: Make (N.O.) 1: Brake (N.C.)	0	C
4416	1140h	OUTO output function selection (upper)	Refer to "Setting range for OUT output function selection" on p. 243 .	70: HOME-P	C
4417	1141h	OUTO output function selection (lower)			
4418	1142h	OUT1 output function selection (upper)		69: END	C
4419	1143h	OUT1 output function selection (lower)			
4420	1144h	OUT2 output function selection (upper)		73: AREA1	C
4421	1145h	OUT2 output function selection (lower)			
4422	1146h	OUT3 output function selection (upper)		67: READY	C
4423	1147h	OUT3 output function selection (lower)			
4424	1148h	OUT4 output function selection (upper)		66: WNG	C
4425	1149h	OUT4 output function selection (lower)			
4426	114Ah	OUT5 output function selection (upper)		65: ALM	C
4427	114Bh	OUT5 output function selection (lower)			
4448	1160h	NET-INO input function selection (upper)	Refer to "Setting range for NET-IN input function selection" on p. 243 .	48: MO	C
4449	1161h	NET-INO input function selection (lower)			
4450	1162h	NET-IN1 input function selection (upper)		49: M1	C
4451	1163h	NET-IN1 input function selection (lower)			
4452	1164h	NET-IN2 input function selection (upper)		50: M2	C
4453	1165h	NET-IN2 input function selection (lower)			
4454	1166h	NET-IN3 input function selection (upper)		4: START	C
4455	1167h	NET-IN3 input function selection (lower)			
4456	1168h	NET-IN4 input function selection (upper)		3: HOME	C
4457	1169h	NET-IN4 input function selection (lower)			
4458	116Ah	NET-IN5 input function selection (upper)		18: STOP	C
4459	116Bh	NET-IN5 input function selection (lower)			
4460	116Ch	NET-IN6 input function selection (upper)		16: FREE	C
4461	116Dh	NET-IN6 input function selection (lower)			

Register address		Name	Setting range	Initial value	Update
Dec	Hex				
4462	116Eh	NET-IN7 input function selection (upper)	"Setting range for NET-IN input function selection" on p. 243	0 : No function	C
4463	116Fh	NET-IN7 input function selection (lower)			
4464	1170h	NET-IN8 input function selection (upper)		8: MSO	C
4465	1171h	NET-IN8 input function selection (lower)			
4466	1172h	NET-IN9 input function selection (upper)		9: MS1	C
4467	1173h	NET-IN9 input function selection (lower)			
4468	1174h	NET-IN10 input function selection (upper)		10: MS2	C
4469	1175h	NET-IN10 input function selection (lower)			
4470	1176h	NET-IN11 input function selection (upper)		5: SSTART	C
4471	1177h	NET-IN11 input function selection (lower)			
4472	1178h	NET-IN12 input function selection (upper)		6: +JOG	C
4473	1179h	NET-IN12 input function selection (lower)			
4474	117Ah	NET-IN13 input function selection (upper)		7: -JOG	C
4475	117Bh	NET-IN13 input function selection (lower)			
4476	117Ch	NET-IN14 input function selection (upper)		1: FWD	C
4477	117Dh	NET-IN14 input function selection (lower)			
4478	117Eh	NET-IN15 input function selection (upper)		2: RVS	C
4479	117Fh	NET-IN15 input function selection (lower)			
4480	1180h	NET-OUTO output function selection (upper)	"Setting range for NET-OUT output function selection" on p. 243	48: MO_R	C
4481	1181h	NET-OUTO output function selection (lower)			
4482	1182h	NET-OUT1 output function selection (upper)		49: M1_R	C
4483	1183h	NET-OUT1 output function selection (lower)			
4484	1184h	NET-OUT2 output function selection (upper)		50: M2_R	C
4485	1185h	NET-OUT2 output function selection (lower)			
4486	1186h	NET-OUT3 output function selection (upper)		4: START_R	C
4487	1187h	NET-OUT3 output function selection (lower)			
4488	1188h	NET-OUT4 output function selection (upper)		70: HOME-P	C

	Register address		Name	Setting range	Initial value	Update
	Dec	Hex				
	4489	1189h	NET-OUT4 output function selection (lower)	"Setting range for NET-OUT output function selection" on p. 243	70: HOME-P	C
	4490	118Ah	NET-OUT5 output function selection (upper)		67: READY	C
	4491	118Bh	NET-OUT5 output function selection (lower)			
	4492	118Ch	NET-OUT6 output function selection (upper)		66: WNG	C
	4493	118Dh	NET-OUT6 output function selection (lower)			
	4494	118Eh	NET-OUT7 output function selection (upper)		65: ALM	C
	4495	118Fh	NET-OUT7 output function selection (lower)			
	4496	1190h	NET-OUT8 output function selection (upper)		80: S-BSY	C
	4497	1191h	NET-OUT8 output function selection (lower)			
	4498	1192h	NET-OUT9 output function selection (upper)		73: AREA1	C
	4499	1193h	NET-OUT9 output function selection (lower)			
	4500	1194h	NET-OUT10 output function selection (upper)		74: AREA2	C
	4501	1195h	NET-OUT10 output function selection (lower)			
	4502	1196h	NET-OUT11 output function selection (upper)		75: AREA3	C
0	4503	1197h	NET-OUT11 output function selection (lower)			
$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{5} \end{aligned}$	4504	1198h	NET-OUT12 output function selection (upper)		72: TIM	C
$\begin{aligned} & \mathrm{O}_{\mathrm{O}} \\ & \hline 0 \end{aligned}$	4505	1199h	NET-OUT12 output function selection (lower)			
$\begin{aligned} & \frac{0}{3} \\ & \pm \end{aligned}$	4506	119Ah	NET-OUT13 output function selection (upper)		68: MOVE	C
$\frac{\overline{0}}{5}$	4507	119Bh	NET-OUT13 output function selection (lower)			
3	4508	119Ch	NET-OUT14 output function selection (upper)		69: END	C
$\begin{aligned} & \text { ت} \\ & \stackrel{\rightharpoonup}{n} \end{aligned}$	4509	119Dh	NET-OUT14 output function selection (lower)			
$\underset{\sim}{\mathrm{C}}$	4510	119Eh	NET-OUT15 output function selection (upper)		71:TLC	C
$\begin{aligned} & 0 \\ & 1 \\ & \stackrel{0}{\infty} \end{aligned}$	4511	119Fh	NET-OUT15 output function selection (lower)			
0	4608	1200h	Communication timeout (upper)	0 : Not monitored 1 to $10,000 \mathrm{~ms}$	0	A
응	4609	1201h	Communication timeout (lower)			
$\begin{aligned} & \frac{3}{3} \\ & \frac{1}{2} . \end{aligned}$	4610	1202h	Communication error alarm (upper)	1 to 10 times	3	A
$\begin{aligned} & \overline{\mathrm{O}} \\ & \overline{\mathrm{O}} \end{aligned}$	4611	1203h	Communication error alarm (lower)			

* Acceleration/deceleration rate ($\mathrm{ms} / \mathrm{kHz}$) or acceleration/deceleration time (s) can be selected using "Acceleration/deceleration unit" parameter. (initial value: acceleration/deceleration rate).
- Setting range for IN input function selection

0: No function	8: MS0	18: STOP	35: R3	43: R11	51: M3
1: FWD	9: MS1	24: ALM-RST	36: R4	44: R12	52: M4
2: RVS	10: MS2	25: P-PRESET	37: R5	45: R13	53: M5
3: HOME	11: MS3	26: P-CLR *	38: R6	46: R14	
4: START	12: MS4	27: HMI	39: R7	47: R15	
5: SSTART	13: MS5	32: R0	40: R8	48: M0	
6: +JOG	16: FREE	33: R1	41: R9	49: M1	
7: -JOG	17: C-ON	34: R2	42: R10	50: M2	

* It cannot be used.
- Setting range for OUT output function selection

0 : No function	10: MS2_R	35: R3	45: R13	61:-LS_R	72: TIM
1: FWD_R	11: MS3_R	36: R4	46: R14	62: HOMES_R	73: AREA1
2: RVS_R	12: MS4_R	37: R5	47: R15	63: SLIT_R	74: AREA2
3: HOME_R	13: MS5_R	38: R6	48: MO_R	65: ALM	75: AREA3
4: START_R	16: FREE_R	39: R7	49: M1_R	66: WNG	80: S-BSY
5: SSTART_R	17: C-ON_R	40: R8	50: M2_R	67: READY	82: MPS *
6: +JOG_R	18: STOP_R	41: R9	51: M3_R	68: MOVE	
7:-JOG_R	32: R0	42: R10	52: M4_R	69: END	
8: MSO_R	33: R1	43: R11	53: M5_R	70: HOME-P	
9: MS1_R	34: R2	44: R12	60: +LS_R	71:TLC	

- Setting range for NET-IN input function selection

0: No function	8: MS0	18: STOP	35: R3	43: R11	51: M3
1: FWD	9: MS1	24: ALM-RST	36: R4	44: R12	52: M4
2: RVS	10: MS2	25: P-PRESET	37: R5	45: R13	53: M5
3: HOME	11: MS3	26: P-CLR*	38: R6	46: R14	
4: START	12: MS4	27: HMI	39: R7	47: R15	
5: SSTART	13: MS5	32: R0	40: R8	48: M0	
6: +JOG	16: FREE	33: R1	$41:$ R9	49: M1	
7: -JOG	17: C-ON	34: R2	42:R10	50: M2	

* It cannot be used.
- Setting range for NET-OUT output function selection

0: No function	10: MS2_R	35: R3	45: R13	61:-LS_R	72: TIM
1:FWD_R	11: MS3_R	36: R4	46: R14	62: HOMES_R	73: AREA1
2: RVS_R	12: MS4_R	37: R5	47: R15	63: SLIT_R	74: AREA2
3: HOME_R	13: MS5_R	38: R6	48: M0_R	65: ALM	75: AREA3
4: START_R	16: FREE_R	39: R7	49: M1_R	66: WNG	80: S-BSY
5: SSTART_R	17: C-ON_R	40: R8	50: M2_R	67: READY	82: MPS *
6: +JOG_R	18: STOP_R	41: R9	51: M3_R	68: MOVE	
7: -JOG_R	32: R0	42: R10	52: M4_R	69: END	
8: MSO_R	33: R1	43: R11	53: M5_R	70: HOME-P	
9: MS1_R	34: R2	44: R12	60: +LS_R	71: TLC	

* AC power input only.

9 Group send

Multiple servers are made into a group and a query is sent to all servers in the group at once.

Group composition

A group consists of one parent server and child servers and only the parent server returns a response.

- Group address

To perform a group send, set a group address to the child servers to be included in the group.
The child servers to which the group address has been set can receive a query sent to the parent server.

Client	Query (send to the parent server)	
Child server		Execute the process but doesnot sent a response.

- Parent server

No special setting is required on the parent server to perform a group send. The address of the parent server becomes the group address. When a query is sent to the parent server from the client, the parent server executes the requested process and then returns a response (same as with the unicast mode).

- Child server

Use a "Group" command to set a group address to each child server. Change the group in the unicast mode. When setting a group, read/write to the upper and lower at the same time.

Register address		Name	Description	READ/ WRITE	Setting range
Dec	Hex			R/W	$-1 \quad$: Individual (No group setting) 1 to 31: Group address (Address number of parent server)
48	0030 h	Group (upper)	Sets the group address.	R/W	(lower)
49	0031 h	Group			

memo Since the group setting is not saved in the non-volatile memory even when the "Batch non-volatile memory write" executes, the group setting will be cleared when turning the driver power supply OFF.

Function code to execute in a group send

Function code	Function
10 h	Writing to multiple holding registers

10 Setting example of the operation

10-1 Positioning operation

As an example, here is a description how to execute the following positioning operation. For details of positioning operation, refer to p. 165 .
This section explains by using the function code" 10 " for data writing and using the function code " 06 " for remote l/O writing.

- Setting example
- Address number (Server address) : 1
- Position (travel amount) : 1,000 steps
- Operating speed :5,000 Hz
- Operation procedure

1. Send the following query and set the position (travel amount) of the operation data No. 0 to 1,000 steps.

Query

Field name	Data	Description				
Server address					01 h	Server address1
Function code	Register address (upper)	10h	Writing to multiple holding registers			
	Register address (lower)	Number of registers (upper)	04 h			
	Register address to start writing from					

Response

Field name		Data	Description
Server address		01h	Same as query
Function code		10h	
Data	Register address (upper)	04h	
	Register address (lower)	00h	
	Number of registers (upper)	00h	
	Number of registers (lower)	02h	
Error check (lower)		40h	Calculation result of CRC-16
Error check (upper)		F8h	

2. Send the following query and set the operating speed of the operation data No. 0 to $5,000 \mathrm{~Hz}$.

Query

Field name	Data		
Server address	01 h	Server address1	
	Register address (upper)	10 h	Writing to multiple holding registers
	Register address (lower)	04 h	Register address to start writing from
	Number of registers (upper)	80 h	

Response

Field name		Data	Description
Server address		01h	Same as query
Function code		10h	
Data	Register address (upper)	04h	
	Register address (lower)	80h	
	Number of registers (upper)	00h	
	Number of registers (lower)	02h	
Error check (lower)		41h	Calculation result of CRC-16
Error check (upper)		10h	

3. Send the following query and turn START ON. Positioning operation is started.

Query

Field name		Data	Description
Server address		01h	Server address 1
Function code		06h	Writing to a holding register
Data	Register address (upper)	00h	Register address to which writing is executed = Driver input command (007Dh)
	Register address (lower)	7Dh	
	Value written (upper)	00h	Value written to register address = START ON (0008h)
	Value written (lower)	08h	
Error check (lower)		18h	Calculation result of CRC-16
Error check (upper)		14h	

Response

Field name		Data	Description
Server address		01h	Same as query
Function code		06h	
Data	Register address (upper)	00h	
	Register address (lower)	7Dh	
	Value written (upper)	00h	
	Value written (lower)	08h	
Error check (lower)		18h	Calculation result of CRC-16
Error check (upper)		14h	

4. When positioning operation is started, send the following query and turn START OFF again.

Query

Field name	Data	Description	
Server address			01 h

Response

Field name		Data	Description
Server address		01h	Same as query
Function code		06h	
Data	Register address (upper)	00h	
	Register address (lower)	7Dh	
	Value written (upper)	00h	
	Value written (lower)	00h	
Error check (lower)		19h	Calculation result of CRC-16
Error check (upper)		D2h	

10-2 Continuous operation

As an example, here is a description how to execute the following continuous operation. For details of continuous operation, refer to p. 188.
This section explains by using the function code" 10 h " for data writing and using the function code " 06 h " for remote I/O writing.

- Setting example
- Address number (Server address) : 1
- Rotation direction : Forward direction (FWD)
- Operating speed : $5,000 \mathrm{~Hz}$
- Operation procedure

1. Send the following query and set the operating speed of the operation data No. 0 to $5,000 \mathrm{~Hz}$.

Query

Field name		Data	Description
Server address		01h	Server address1
Function code		10h	Writing to multiple holding registers
Data	Register address (upper)	04h	Register address to start writing from = Operating speed No. 0 (0480h)
	Register address (lower)	80h	
	Number of registers (upper)	00h	Number of registers to be written from the starting register address
	Number of registers (lower)	02h	
	Number of bytes	04h	Twice the number of registers in the query
	Value written to register address (upper)	00h	Value written to register address$\text { = 5,000 Hz (0000 1388h })$
	Value written to register address (lower)	00h	
	Value written to register address + 1 (upper)	13h	
	Value written to register address + 1 (lower)	88h	
Error check (lower)		C4h	Calculation result of CRC-16
Error check (upper)		59h	

Response

Field name		Data	Description
Server address		01h	Same as query
Function code		10h	
Data	Register address (upper)	04h	
	Register address (lower)	80h	
	Number of registers (upper)	00h	
	Number of registers (lower)	02h	
Error check (lower)		41h	Calculation result of CRC-16
Error check (upper)		10h	

2. Send the following query and turn FWD ON. Continuous operation is started.

Query

Field name		Data	Description
Server address		01h	Server address1
Function code		06h	Writing to a holding register
Data	Register address (upper)	00h	Register address to which writing is executed = Driver input command (007Dh)
	Register address (lower)	7Dh	
	Value written (upper)	40h	Value written to register address= FWD ON (4000h)
	Value written (lower)	00h	
Error check (lower)		28h	Calculation result of CRC-16
Error check (upper)		12h	

Response

Field name		Data	Description
Server address		01h	Same as query
Function code		06h	
Data	Register address (upper)	00h	
	Register address (lower)	7Dh	
	Value written (upper)	40h	
	Value written (lower)	00h	
Error check (lower)		28h	Calculation result of CRC-16
Error check (upper)		12h	

3. To stop continuous operation, send the following query and turn FWD OFF again. The motor decelerates to a stop.

Query

Field name		Data	Description
Server address		01h	Server address1
Function code		06h	Writing to a holding register
Data	Register address (upper)	00h	Register address to which writing is executed = Driver input command (007Dh)
	Register address (lower)	7Dh	
	Value written (upper)	00h	Value written to register address $=$ FWD OFF (0000h)
	Value written (lower)	00h	
Error check (lower)		19h	Calculation result of CRC-16
Error check (upper)		D2h	

Response

Field name		Data	Description
Server address		01h	Same as query
Function code		06h	
Data	Register address (upper)	00h	
	Register address (lower)	7Dh	
	Value written (upper)	00h	
	Value written (lower)	00h	
Error check (lower)		19h	Calculation result of CRC-16
Error check (upper)		D2h	

10-3 Return-to-home operation

As an example, here is a description how to execute the following return-to-home operation. For details of return-tohome operation, refer to p.179.

- Setting example

- Address number (Server address) : 1
- Operation condition : Initial value
- Operation procedure

1. Send the following query and turn HOME ON. Return-to-home operation is started.

Query

Field name		Data	Description
Server address		01h	Server address1
Function code		06h	Writing to a holding register
Data	Register address (upper)	00h	Register address to which writing is executed = Driver input command (007Dh)
	Register address (lower)	7Dh	
	Value written (upper)	00h	Value written to register address = HOME ON (0010h)
	Value written (lower)	10h	
Error check (lower)		18h	Calculation result of CRC-16
Error check (upper)		1Eh	

Response

Field name		Data	Description
Server address		01h	Same as query
Function code		06h	
Data	Register address (upper)	00h	
	Register address (lower)	7Dh	
	Value written (upper)	00h	
	Value written (lower)	10h	
Error check (lower)		18h	Calculation result of CRC-16
Error check (upper)		1Eh	

2. When Return-to-home operation is started, send the following query and turn HOME OFF again.

Query

Field name		Data	Description
Server address		01h	Server address1
Function code		06h	Writing to a holding register
Data	Register address (upper)	00h	Register address to which writing is executed = Driver input command (007Dh)
	Register address (lower)	7Dh	
	Value written (upper)	00h	Value written to register address = HOME OFF (0000h)
	Value written (lower)	00h	
Error check (lower)		19h	Calculation result of CRC-16
Error check (upper)		D2h	

Response

Field name		Data	Description
Server address		01h	Same as query
Function code		06h	
Data	Register address (upper)	00h	
	Register address (lower)	7Dh	
	Value written (upper)	00h	
	Value written (lower)	00h	
Error check (lower)		19h	Calculation result of CRC-16
Error check (upper)		D2h	

11 Detection of communication errors

This function detects abnormalities that may occur during RS-485 communication. The abnormalities that can be detected include communication errors, alarms and warnings.

11-1 Communication errors

A communication error record will be saved in the RAM. You can check the communication errors using the MEXEO2 or "Communication error record" command via RS-485 communication.
memo You can also clear the communication error records by turning off the driver power supply.

Type of communication error	Error code	Cause
RS-485 communication error	84 h	A transmission error was detected. Refer to "No response" on p.220.
Command not yet defined	88 h	An exception response (exception code 01h, 02h) was detected. Refer to p.221.
Execution disable due to user I/F communication in progress	89 h	An exception response (exception code 04h) was detected. Refer
Not possible to execute because of non-volatile memory processing	8 Ah	to p.221.
Outside setting range	8 Ch	An exception response (exception code 03h, 04h) was detected. Refer to p.221.
Command execute disable	8Dh	An exception response (exception code 04h) was detected. Refer to p.221.

11-2 Alarms and warnings

When an alarm generates, the ALM output will turn OFF and the motor will stop. At the same time, the ALM LED (or ALARM LED) will start blinking.
When a warning generates, the WNG output will turn ON. The motor will continue to operate. Once the cause of the warning is removed, the WNG output will turn OFF automatically.
memo You can also clear the warning records by turning off the driver power supply.

Communication switch setting error

When setting the transmission rate setting switch (SW2) to positions 8 to F, the transmission rate setting switch error will occur.

- RS-485 communication error (84h)

The table shows the relationship between alarms and warnings when an RS-485 communication error occurs.

Description of error	Description
Warning	A warning generates when one RS-485 communication error (84h) has been detected. If normal reception occurs while the warning is present, the warning will be reset automatically.
Alarm	An alarm generates when a RS-485 communication error (84h) has been detected consecutively by the number of times set in the "Communication error alarm" parameter.

- RS-485 communication timeout (85h)

If communication is not established with the client after an elapse of the time set by the "Communication timeout" parameter, a RS-485 communication timeout alarm will generate.

12 Timing charts

Communication start

* C3.5 (silent interval) + Tb5 (query processing time (driver)) + Tb2 (transmission waiting time (driver side))

Operation start

*1 A message including a query to start operation via RS-485 communication.
*2 C3.5 (silent interval) + Tb5 (query processing time (driver)) + Tb2 (transmission waiting time (driver side))
*3 C3.5 (silent interval) +4 ms or less
■ Operation stop, speed change

*1 A message including a query to stop operation and another to change the speed via RS-485 communication.
*2 C3.5 (silent interval) + Tb5 (query processing time (driver)) + Tb2 (transmission waiting time (driver side))
*3 The specific time varies depending on the command speed.
*4 The deceleration method to be applied at the time of stopping varies according to the "STOP input action" parameter.

General signals

*1 A message including a query for remote output via RS-485 communication.
*2 C3.5 (silent interval) + Tb5 (query processing time (driver)) + Tb2 (transmission waiting time (driver side))
*3 C3.5 (silent interval) +4 ms or less

Configuration

*1 A message including a query for configuration via RS-485 communication.
*2 C3.5 (silent interval) + Tb5 (query processing time (driver)) + Tb2 (transmission waiting time (driver side))
*3 C3.5 (silent interval) +4 ms or less
*4 Internal processing time +1 s or less
*5 Execute a query after the driver internal processing is completed.

7 Method of control via industrial network

This part explains how to control via industrial network using our network converter.

Table of contents

1 Setting the switches 258
1-1 Setting the AC power input 258
1-2 Setting the DC power input 260
2 Method of control via CC-Link communication 262
2-1 Guidance 262
2-2 Operation example of command selection method 267
2-3 Operation example of command fixation method 274
3 Method of control via EtherCAT communication 281
3-1 Guidance. 281
3-2 Basic operating procedures 287
4 Method of control viaMECHATROLINK communication290
4-1 Guidance. 290
4-2 Basic operation procedure 295
4-3 Field map of the NETC01-M2 298
4-4 Field map of the NETC01-M3 299
4-5 Communication formats 300
5 Details of remote I/O 302
5-1 Input signals to the driver 302
5-2 Output signals from the driver 303
6 Command code list 305
6-1 Group function 305
6-2 Maintenance command 306
6-3 Monitor command 307
6-4 Operation data 309
6-5 User parameters 310

1 Setting the switches

Switches differ in the AC input driver and the DC input driver. Set properly.

1-1 Setting the AC power input

The figures show the status of factory setting.

- Driver front side

- Driver bottom side

Function setting switch (SW4) No.1: Sets the address number No.2: Sets the protocol.

Note When setting any switch, turn off the main power supply and the 24 VDC power supply of the driver and wait for the CHARGE LED to turn off before doing so. The residual voltage may cause electric shock.
memo The set switches are enabled after the 24 VDC power supply is turned on again.

Protocol
Using the SW4-No. 2 of the function setting switch to OFF. The network converter is selected.
Factory setting OFF

SW4-No.2	Protocol
ON	Modbus RTU mode
OFF	Connecting with network converter

Address number (Device address)

Using the address number setting switch (ID) and SW4-No. 1 of the function setting switch, set the address number (device address). Make sure each address number (device address) you set for each driver is unique. Up to 16 units can be connected.

Factory setting ID: 0, SW4-No.1: OFF (Device address 0)

Address number	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
ID	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
SW4-No. 1	OFF															

Transmission rate

Using the transmission rate setting switch (SW2), set the transmission rate to $625,000 \mathrm{bps}$.
Factory setting 7 (625,000 bps)

Termination resistor

Use a termination resistor for the driver located farthest away (positioned at the end) from the network converter. Turn the termination resistor setting switch (TERM.-Nos. 1 and 2) ON to set the termination resistor for RS-485 communication (120 Ω).

Factory setting Nos. 1 and 2: Both OFF (termination resistor disabled)

TERM.-Nos. 1 and 2	Termination resistor (120Ω)
Both are OFF	Disabled
Both are ON	Enabled

memo If only one of No. 1 or No. 2 is turned ON, a communication error may occur.

For example, in the case of the following system, the termination resistor should be set to two drivers.

1-2 Setting the DC power input

The figures show the status of factory setting.

- Driver front side

- Driver top side

Function setting switch (SW3)
No.1: Sets the address number.
No.2: Sets the protocol.
No.3: Not used.
No.4: Sets the termination resistor (120 Ω).
memo Be sure to turn off the driver power supply before setting the switches. If the switches are set while the power is still on, the new switch settings will not become effective until the driver power supply is cycled.

Protocol

Using the SW3-No. 2 of the function setting switch to OFF. The network converter is selected.
Factory setting OFF

SW3-No.2	Protocol
ON	Modbus RTU mode
OFF	Connecting with network converter

Address number (Device address)

Using the address number setting switch (SW1) and SW3-No. 1 of the function setting switch, set the address number (device address). Make sure each address number (device address) you set for each driver is unique. Up to 16 units can be connected.

Factory settingSW1: 0, SW3-No.1: OFF (Device address 0)

Device number	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
SW1	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
SW3-No. 1	OFF															

Transmission rate

Using the transmission rate setting switch (SW2), set the transmission rate to $625,000 \mathrm{bps}$.
Factory setting 7 (625,000 bps)

Termination resistor

Use a termination resistor for the driver located farthest away (positioned at the end) from the network converter. Turn the termination resistor setting switches (SW3-No.4) ON to set the termination resistor for RS-485 communication (120 Ω).
Factory setting OFF (termination resistor disabled)

SW3-No.4	Termination resistor (120Ω)
OFF	Disabled
ON	Enabled

For example, in the case of the following system, the termination resistor should be set to two drivers.

2 Method of control via CC-Link communication

2-1 Guidance

If you are new to the AR Series FLEX built-in controller type, read this section to understand the operating methods along with the operation flow.
\square

STEP 1	Installation and connection \Rightarrow p. 264

STEP 2 Setting of NETC02-CC \Rightarrow p. 265
\downarrow

STEP 3	Setting of driver \Rightarrow p. 266

\downarrow

STEP 4	Turn on the power and check the LED
$\Rightarrow p .267$	

Setting of data with selecting the command execution method

Command selection method \Rightarrow p. 267

This is a method to execute with setting the command code, address number, and data.
Read and write of data, monitor, and each command of maintenance are executed by the request signal "D-REQ."

Command fixation method \Rightarrow p. 274

This is a method to execute with reading and writing data. The command code and address number are fixed. Write of data is started by the request signal "WR-REQ," and read of data and monitor are started by the request signal "RD-REQ."

Setting condition

- Setting of driver

Address number 0	AC power input
Address number 1	DC power input
Protocol	Network converter
RS-485 communication transmission rate	625,000 bps

- Setting of NETC02-CC

Number of connected driver	2 units
CC-Link baud rate	10 Mbps
STATION No.	No.1
Register arrangement mode	4 word arrangement

- Setting of master station

Setting of network parameter

Remote input (RX)	RX1000
Remote output (RY)	RY1000
Remote register (RWr)	W0
Remote register (RWw)	W100
Extended cyclic setting	$\times 2$
Remote device station	4 station occupied

Setting of CC-Link master station

CC-Link baud rate	10 Mbps
STATION No.	No.0

Note Before operating the motor, check the condition of the surrounding area to ensure safety.
memo The NETC02-CC incorporates a termination resistor for RS-485 communication. This product can be used without setting the termination resistor.

STEP 1 Check the installation and connection

[^18]
STEP 2 Set the switches of the NETCO2-CC

Set the switches provided on the upper side of the NETC02-CC as follows. The status becomes as shown in the following figures after setting.

Setting item	Switch	Factory setting
RS-485 communication connection unit: 2	Set N-AXIS to "2"	1
CC-Link baud rate: 10 Mbps	Set B-RATE to "4"	0
CC-Link station No.: 1	Set the $\times 1$ to "1" and the $\times 10$ to "0" of the STATION No.	$1(\times 1: 1, \times 10: 0)$
Operation mode: OFF	Set No.1 to No.4 to "OFF"	All OFF

STEP 3 Set the switches of the driver

Set the following with the switches of the driver. The status becomes as shown in the following figures after setting.

Setting item	AC power input	DC power input
Protocol: Network converter	Set No.2 of SW4 to "OFF"	Set No.2 of SW3 to "OFF"
Address number: AC power input driver is "0" DC power input driver is "1"	Set No.1 of SW4 to "OFF" Set ID to "0"	Set No.1 of SW3 to "OFF" Set SW1 to "1"
Termination resistor: AC power input driver is "OFF" DC power input driver is "ON"	Set No.1 and No.2 of TERM. to "OFF"	Set No.4 of SW3 to "ON"
Transmission rate: 625,000 bps	Set SW2 to "7"	Set SW2 to "7"

AC power input

- Driver front side

Function setting switch (SW4) No.1: Sets the address number. No.2: Sets the protocol,

DC power input

- Driver front side

- Driver top side

Function setting switch (SW3)
No.1: Sets the address number.
No.2: Sets the protocol.
No.3: Not used.
No.4: Sets the termination resistor (120 Ω).

STEP 4 Turn on the power and check the LED

Check that the LED of the driver and networ converter are as shown in the figure.

2-2 Operation example of command selection method

This section explains how to perform the following operations using the command selection method.

How to use the request signal

In the operation example, the request signals are used quite differently based on the setting of remote register.

- Operation data, maintenance command

Request signal	Remote register	
	Write	Read
D-REQ0	RWw 100	$\mathrm{RWr0}$
	RWw 101	RWr 1
	RWw 102	RWr 2
	RWw 103	$\mathrm{RWr3}$
D-REQ1	$\mathrm{RWw104}$	$\mathrm{RWr4}$
	RWw 105	$\mathrm{RWr5}$
	RWw 106	$\mathrm{RWr6}$
	RWw 107	RWr

- Monitor command

Request signal	Remote register	
	Write	Read
D-REQ2	RWw108	RWr8
	RWw109	RWr9
	RWw10A	RWrA
	RWw10B	RWrB
D-REQ3	RWw10C	RWrC
	RWw10D	RWrD
	RWw10E	RWrE
	RWw10F	RWrF

STEP 1
Execute continuous operation in the reverse direction by remote I/O, and check if the operation is performed.

1. Start continuous operation in the reverse direction.

Turn the RVS ON.
Master station to NETC02-CC

Address number	Remote I/O	Address	Input value	Description
0	RVS	RY100F	1	Execution of continuous operation
		RY101F	1	

2. Stop continuous operation.

Turn the RVS OFF.
Master station to NETC02-CC

Address number	Remote I/O	Address	Input value	Description
0	RVS	RY100F	0	Stop of continuous operation
		RY101F	0	
1				

memo If not operated, check the setting of the switches, and assignments of remote I/O and remote register.

STEP 2 Perform positioning operation

1. In order to make easier to check that the operation was properly performed when positioning operation was performed, set the position information to " 0 ."
1) Set the maintenance command "P-PRESET execution (30C5h)" to remote register.

Master station to NETC02-CC

Address number	Address	Input value	Description
0	RWw100	30C5h	Command code (P-PRESET execution)
	RWw101	Oh	Address number
	RWw102	1	Data (lower)
	RWw103	0	Data (upper)
1	RWw104	$30 C 5 \mathrm{~h}$	Command code (P-PRESET execution)
	RWw105	1h	Address number
	RWw106	1	Data (lower)
	RWw107	0	Data (upper)

memo Unless " 1 " is set to the data area, the command is not executed.
2) Turn the D-REQ ON to write data to the driver.

Master station to NETC02-CC

Address number	Remote I/O	Address	Input value	Description
0	D-REQ0	RY1080	1	Write execution
1	D-REQ1	RY1082	1	

3) The response of the D-END is automatically changed to " 1 " when it is properly processed.

NETCO2-CC to master station

Address number	Remote I/O	Address	Response	Description
0	D-END0	RX1080	1	Write completed
1	D-END1	RX1082	1	

4) The value written to the driver is displayed when the response of the D-END is changed to "1."

Check the value is matched with the one having set in the above 1).
NETC02-CC to master station

Address number	Address	Response	Description
0.3	RWr0	$30 C 5 \mathrm{~h}$	Command code response (P-PRESET execution)
	RWr1	0 h	Address number response
	RWr2	1	Data (lower)
	RWr3	0	Data (upper)
1	RWr4	30 C 5 h	Command code response (P-PRESET execution)
	RWr5	1 h	Address number response
	RWr6	1	Data (lower)

5) Check it has been written properly, and turn the D-REQ OFF.

Master station to NETC02-CC

Address number	Remote I/O	Address	Input value	Description
0	D-REQ0	RY1080	0	Write execution
1	D-REQ1	RY1082	0	

2. Check the position information is changed to " 0 " by the "P-PRESET execution" of the maintenance command.
1) Set the "Actual position (2066h)" of the monitor command to remote register.

Master station to NETCO2-CC

Address number	Address	Input value	Description
0	RWw108	2066 h	Command code (actual position)
	RWw109	0 h	Address number
	RWw10A	0	Data (lower)
	RWw10B	0	Data (upper)
1	RWw10C	2066 h	Command code (actual position)
	RWw10D	1 h	Address number
	RWw10E	0	Data (lower)
	RWw10F	0	Data (upper)

2) Turn the D-REQ ON to write data to the driver.

Master station to NETC02-CC

Address number	Remote I/O	Address	Input value	Description
0	D-REQ2	RY1084	1	Start of monitor
1	D-REQ3	RY1086	1	

3) The response of the D-END is automatically changed to " 1 " when it is properly processed.

NETC02-CC to master station

Address number	Remote I/O	Address	Response	Description
0	D-END2	RX1084	1	During monitor
1	D-END3	RX1086	1	

4) The value written to the driver is displayed when the response of the D-END is changed to "1."

Check the data area is changed to " 0 ."
NETC02-CC to master station

Address number	Address	Response	Description
0	RWr8	2066 h	Command code response (actual position)
	RWr9	0 h	Address number response
	RWrA	0	Data (lower)
	RWrB	0	Data (upper)
1	RWrC	2066 h	Command code response (actual position)
	RWrD	1 h	Address number response
	RWrE	0	Data (lower)

5) Check it has been written properly, and turn the D-REQ OFF.

Master station to NETC02-CC

Address number	Remote I/O	Address	Input value	Description
0	D-REQ2	RY1084	0	End of monitor
1	D-REQ3	RY1086	0	

3. Set the operation data of positioning operation.

Set the position No. 0 and position data "5,000 (1388h)" to remote register.
Master station to NETC02-CC

Address number	Address	Input value	Description
0.3	RWw100	1200 h	Command code (position No.0)
	RWw101	0 h	Address number
	RWw102	5,000	Data (lower)
	RWw103	$(1388 \mathrm{~h})$	Data (upper)
1	RWw104	1200 h	Command code (position No.0)
	RWw105	1h	Address number
	RWw106	5,000 $(1388 \mathrm{~h})$	Data (lower)
	RWw107		Data (upper)

4. Write the set data in the above 3 to the driver to check the response.
1) Turn the D-REQ ON.

Master station to NETC02-CC

Address number	Remote I/O	Address	Input value	Description
0	D-REQ0	RY1080	1	Write execution
1	D-REQ1	RY1082	1	

2) The response of the D-END is automatically changed to "1" when it is properly processed.

NETC02-CC to master station

Address number	Remote I/O	Address	Response	Description
0	D-END0	RX1080	1	Write completed
1	D-END1	RX1082	1	

3) The value written to the driver is displayed when the response of the D-END is changed to "1."

Check the value is matched with the one having set in the above 3.
NETC02-CC to master station

Address number	Address	Response	Description
0	RWr0	1200 h	Command code response (position No.0)
	RWr1	0 h	Address number response
	RWr2	5,000	
	RWr3	$(1388 \mathrm{~h})$	Data (lower)
1	RWr4	1200 h	Data (upper)
	RWr5	1 h	Command code response (position No.0)
	RWr6	5,000	Address number response
	RWr7	$(1388 \mathrm{~h})$	Data (lower)

5. Check it has been written properly, and turn the D-REQ OFF.

Master station to NETC02-CC

Address number	Remote I/O	Address	Input value	Description
0	D-REQ0	RY1080	0	Write completed
1	D-REQ1	RY1082	0	

6. Start positioning operation.

Turn the START ON.
Master station to NETC02-CC

Address number	Remote I/O	Address	Input value	Description
0	START	RY1003	1	Start of positioning operation
		RY1013	1	

7. When positioning operation is started, turn the START OFF.

Even if the START is turned OFF, the operation continues until the command position.
NETC02-CC to master station

Address number	Remote I/O	Address	Input value	Description
0	START	RY1003	0	Turn the START OFF
		RY1013	0	
1				

STEP 3 Monitor the actual position

1. Set the "Actual position (2066h)" of the monitor command to remote register

Master station to NETC02-CC

Address number	Address	Input value	Description
0	RWw108	2066 h	Command code (actual position)
	RWw109	0 h	Address number
	RWw10A	0	Data (lower)
	RWw10B	0	Data (upper)
1	RWw10C	2066 h	Command code (actual position)
	RWw10D	1 h	Address number
	RWw10E	0	Data (lower)
	RWw10F	0	Data (upper)

2. Write the set data in the above 1 to the driver to check the response.
1) Turn the D-REQ ON.

Master station to NETCO2-CC

Address number	Remote I/O	Address	Input value	Description
0	D-REQ2	RY1084	1	Start of monitor
1	D-REQ3	RY1086	1	

2) The response of the D-END is automatically changed to "1" when it is properly processed.

NETC02-CC to master station

Address number	Remote I/O	Address	Response	Description
0	D-END2	RX1084	1	During monitor
1	D-END3	RX1086	1	

3) The response of the D-END is changed to "1," the monitor of the actual position is started.

The monitor is continued while the D-REQ is ON.
NETC02-CC to master station

Address number	Address	Response	Description
0	RWr8	2066 h	Command code response (actual position)
	RWr9	0 h	Address number response
	RWrA	5,000	Data (lower)
	RWrB	$(1388 \mathrm{~h})$	Data (upper)
1	RWrC	2066 h	Command code response (actual position)
	RWrD	1 h	Address number response
	RWrE	5,000	Data (lower)
	RWrF	$(1388 \mathrm{~h})$	Data (upper)

3. End the monitor.

Turn the D-REQ OFF.
Master station to NETC02-CC

Address number	Remote I/O	Address	Input value	Description
0	D-REQ2	RY1084	0	End of monitor
1	D-REQ3	RY1086	0	

STEP 4 Write the position information to the non-volatile memory.
memo The non-volatile memory can be rewritten approximately 100,000 times.

1. Set the maintenance command "Batch non-volatile memory write (30C9h)" to remote register.

Master station to NETC02-CC

Address number	Address	Input value	Description
0	RWw100	$30 C 9 \mathrm{~h}$	Command code (batch non-volatile memory write)
	RWw101	0 h	Address number
	RWw102	1	Data (lower)
	RWw103	0	Data (upper)
1	RWw104	$30 C 9 \mathrm{~h}$	Command code (batch non-volatile memory write)
	RWw105	1 h	Address number
	RWw106	1	Data (lower)
	RWw107	0	Data (upper)

2. Write the set data in the above 1 to the driver to check the response.
1) Turn the D-REQ ON.

Master station to NETCO2-CC

Address number	Remote I/O	Address	Input value	Description
0	D-REQ0	RY1080	1	Write execution
1	D-REQ1	RY1082	1	

2) The response of the D-END is automatically changed to "1" when it is properly processed.

NETC02-CC to master station

Address number	Remote I/O	Address	Response	Description
0	D-END0	RX1080	1	Write completed
1	D-END1	RX1082	1	

3) The value written to the driver is displayed when the response of the D-END is changed to "1."

Check the value is matched with the one having set in the above 1).
NETC02-CC to master station

Address number	Address	Response	Description
0	RWr0	$30 C 9 \mathrm{~h}$	Command code response (batch non-volatile memory write)
	RWr1	0h	Address number response
	RWr2	1	Data (lower)
1	RWr3	0	Data (upper)
1	RWr4	$30 C 9 \mathrm{~h}$	Command code response (batch non-volatile memory write)
	RWr5	1 h	Address number response
	RWr6	1	Data (lower)
	RWr7	0	Data (upper)

3. Check it has been written properly, and turn the D-REQ OFF.

Master station to NETC02-CC

Address number	Remote I/O	Address	Input value	Description
0	D-REQ0	RY1080	0	Write completed
1	D-REQ1	RY1082	0	

memo Since the data set via CC-Link communication is saved in the RAM, it is erased when the power is turned off. If the "batch non-volatile memory write" is performed, since the data is saved in the non-volatile memory, it is stored even when the power is turned off.

2-3 Operation example of command fixation method

This section explains how to perform the following operations using the command fixation method.

STEP 1	Check an operation	Execute continuous operation in the reverse direction, and check if the operation is performed.
\downarrow		
STEP 2	P-PRESET execution	Set the present position to "0."
\downarrow		
STEP 3	Monitor the value of the driver	Read the monitor of the actual position and the value of the position No.0.
\downarrow		
STEP 4	Perform positioning operation	Set the data of the position No. 0 to execute positioning operation.
\downarrow		
STEP 5	Change of the position data	Change the data of the position No.0.

■ Items of register arrangement (four words arrangement)

- Arrangement of write

Address number	Remote register	Description	Request signal
0	RWw100	Not used	
	RWw101	Not used	
	RWw102	Position No.0 (lower)	
	RWw103	Position No.0 (upper)	
W. WR-REQ0			
	RWw104	Not used	
	RWw105	Not used	
	RWw106	Position No.0 (lower)	
	RWw107	Position No.0 (upper)	

- Arrangement of read and monitor

Address number	Remote register	Description	Request signal
0	RWr0	Actual position (lower)	
	RWr1	Actual position (upper)	
	RWr2	Position No.0 (lower)	
	RWr3	Position No.0 (upper)	
1	RWr4	Actual position (lower)	
	RWr5	Actual position (upper)	
	RWr6	Position No.0 (lower)	
	RWr7	Position No.0 (upper)	

STEP 1
 Execute continuous operation in the reverse direction by remote I/O, and check if the operation is performed

1. Start continuous operation in the reverse direction.

Turn the RVS ON .
Master station to NETCO2-CC

Address number	Remote I/O	Address	Input value	Description
0	RVS	RY100F	1	Execution of continuous operation
		RY101F	1	

2. Stop continuous operation.

Turn the RVS OFF.
Master station to NETC02-CC

Address number	Remote I/O	Address	Input value	Description
0	RVS	RY100F	0	Stop of continuous operation
		RY101F	0	
1				

memo If not operated, check the setting of the switches, and assignments of remote I/O and remote register.

STEP 2 Execute the P-PRESET (maintenance command)

1. Set the present position to "0" using the maintenance command "P-PRESET execution."

Note The maintenance command is performed with the command selection method.

1) Set the maintenance command "P-PRESET execution (30C5h)" to remote register.

Master station to NETC02-CC

Address number	Address	Input value	Description
0	RWw100	30 C 5 h	Command code (P-PRESET execution)
	RWw101	0 h	Address number
	RWw102	1	Data (lower)
	RWw103	0	Data (upper)
1	RWw104	30 C 5 h	Command code (P-PRESET execution)
	RWw105	1 h	Address number
	RWw106	1	Data (lower)
	RWw107	0	Data (upper)

memo Unless " 1 " is set to the data area, the command is not executed.
2) Turn the D-REQ ON to write data to the driver.

Master station to NETC02-CC

Address number	Remote I/O	Address	Input value	Description
0	D-REQ0	RY1080	1	Write execution
1	D-REQ1	RY1082	1	

3) The response of the D-END is automatically changed to " 1 " when it is properly processed.

NETC02-CC to master station

Address number	Remote I/O	Address	Response	Description
0	D-END0	RX1080	1	Write completed
1	D-END1	RX1082	1	

4) The value written to the driver is displayed when the response of the D-END is changed to "1."

Check the value is matched with the one having set in the above 1).
NETC02-CC to master station

Address number	Address	Response	Description
0	RWr0	30 C 5 h	Command code response (P-PRESET execution)
	RWr1	0 h	Address number response
	RWr2	1	Data (lower)
	RWr3	0	Data (upper)
1	RWr4	30 C 5 h	Command code response (P-PRESET execution)
	RWr5	1 h	Address number response
	RWr6	1	Data (lower)
	RWr7	0	Data (upper)

5) Check it has been written properly, and turn the D-REQ OFF.

Master station to NETC02-CC

Address number	Remote I/O	Address	Input value	Description
0	D-REQ0	RY1080	0	Write completed
1	D-REQ1	RY1082	0	

STEP 3 Monitor the value of the driver

Since the register arrangement mode is the four words arrangement, monitor the actual position and read the value of the position No.O.

1. Turn the RD-REQ ON.

Master station to NETC02-CC

Address number	Remote I/O	Address	Input value	Description
0	RD-REQ0	RY1092	1	Start of read and monitor
1				

2. When monitor is started, the response of the RD-DAT is automatically changed to "1."

NETC02-CC to master station

Address number	Remote I/O	Address	Response	Description
0	RD-DAT0	RX1092	1	During read and monitor
1				

3. When the response of the RD-DAT is changed to "1," the monitor of the actual position and read of the position No. 0 are started.
The monitor is continued while the RD-REQ is ON.

NETC02-CC to master station

Address number	Address	Response	Description
0	RWr0	0	Actual position (lower)
	RWr1	0	Actual position (upper)
	RWr 2	0^{*}	Position No.0 (lower)
	$\mathrm{RWr3}$	0^{*}	Position No.0 (upper)
1	RWr 4	0	Actual position (lower)
	RWr 5	0	Actual position (upper)
	$\mathrm{RWr6}$	0^{*}	Position No.0 (lower)
	$\mathrm{RWr7}$	0^{*}	Position No.0 (upper)

* The initial values is " 0. ."

Since the monitor of the actual position and read of the position No. 0 are continuously performed, keep the RD-REQ to the ON-state.

STEP 4 Perform positioning operation

1. Set the operation data of positioning operation.

Set the position data "5,000 (1388h)" of the position No. 0 to remote register.
Master station to NETC02-CC

Address number	Address	Input value	Description
0	RWw100	0	Not used
	RWw101	0	Not used
	RWw102	5,000	Position No. 0 (lower)
	RWw103	(1388h)	Position No. 0 (upper)
1	RWw104	0	Not used
	RWw105	0	Not used
	RWw106	5,000	Position No. 0 (lower)
	RWw107	(1388h)	Position No. 0 (upper)

2. Write the set data in the above 1 to the driver to check the response
1) Turn the WR-REQ ON.

Master station to NETC02-CC

Address number	Remote I/O	Address	Input value	Description
0	WR-REQ0	RY1090	1	Start of write
1				

2) The response of the WR-DAT is automatically changed to "1" when it is properly processed.

NETC02-CC to master station

Address number	Remote I/O	Address	Response	Description
0	WR-DAT0	RX1090	1	During write
1				

3) Since the RD-REQ is kept to the ON-state in the STEP 3, the write value is displayed at the same time the data of the position No. 0 is set.
Check the data of the position No. 0 is matched with the set value.
NETC02-CC to master station

Address number	Address	Response	Description
0	RWr0	0	Actual position (lower)
	RWr1	0	Actual position (upper)
	RWr2	5,000	Position No.0 (lower)
	RWr3	$(1388 \mathrm{~h})$	Position No.0 (upper)
1	RWr4	0	Actual position (lower)
	RWr5	0	Actual position (upper)
	RWr6	5,000	Position No.0 (lower)
	RWr7	$(1388 \mathrm{~h})$	Position No.0 (upper)

3. Start positioning operation.

Turn the START ON.
Master station to NETC02-CC

Address number	Remote I/O	Address	Input value	Description
0	START	RY1003	1	Start of positioning operation
		RY1013	1	
1				

memo Since the RD-REQ is kept to the ON-state in the STEP 3, the monitor of the actual position is started at the same time that positioning operation is started.
4. When positioning operation is started, turn the START OFF.

Even if the START is turned OFF, the operation continues until the command position.

NETC02-CC to master station

Address number	Remote I/O	Address	Input value	Description
0	START	RY1003	0	Turn the START OFF
		0		
1				

5. When positioning operation was completed, check the actual position changes to "5,000 (1388h)."

NETC02-CC to master station

Address number	Address	Response	Description
0	RWro	$\begin{gathered} 5,000 \\ (1388 \mathrm{~h}) \end{gathered}$	Actual position (lower)
	RWr1		Actual position (upper)
	RWr2	$\begin{gathered} 5,000 \\ (1388 \mathrm{~h}) \end{gathered}$	Position No. 0 (lower)
	RWr3		Position No. 0 (upper)
1	RWr4	$\begin{gathered} 5,000 \\ (1388 \mathrm{~h}) \end{gathered}$	Actual position (lower)
	RWr5		Actual position (upper)
	RWr6	$\begin{gathered} 5,000 \\ (1388 \mathrm{~h}) \end{gathered}$	Position No. 0 (lower)
	RWr7		Position No. 0 (upper)

Since the data of the position No. 0 is continuously written, keep the WR-REQ to the ON-state.

STEP 5 Change the position data of the operation data No. 0

1. Set the position data " 3,000 (BB8h)" of the position No. 0 to remote register.

Since the WR-REQ is kept to the ON-state in the STEP 4, the write value is displayed at the same time the data of the position No. 0 is set.

Master station to NETC02-CC

Address number	Address	Input value	Description
0	RWw100	0	Not used
	RWw101	0	Not used
	RWw102	3,000	Position No.0 (lower)
	RWw103	(BB8h)	Position No.0 (upper)
1	RWw104	0	Not used
	RWw105	0	Not used
	RWw106	3,000	Position No.0 (lower)
	RWw107		Position No.0 (upper)

Also, since the RD-REQ is kept to the ON-state in the STEP 3, the write value is read at the same time the data of the position No. 0 is set.
Check the value is matched with the one having set in the above 1.
NETC02-CC to master station

Address number	Address	Response	Description
0	RWr0	$\begin{gathered} 5,000 \\ (1388 \mathrm{~h}) \end{gathered}$	Actual position (lower)
	RWr1		Actual position (upper)
	RWr2	$\begin{aligned} & 3,000 \\ & \text { (BB8h) } \end{aligned}$	Position No. 0 (lower)
	RWr3		Position No. 0 (upper)
1	RWr4	$\begin{gathered} 5,000 \\ (1388 \mathrm{~h}) \end{gathered}$	Actual position (lower)
	RWr5		Actual position (upper)
	RWr6	$\begin{aligned} & 3,000 \\ & \text { (BB8h) } \end{aligned}$	Position No.0 (lower)
	RWr7		Position No. 0 (upper)

2. Turn the WR-REQ and RD-REQ OFF.

Master station to NETC02-CC

Address number	Remote I/O	Address	Input value	Description
0	WR-REQ0	RY1090	0	Write completed
1		0	Read and monitor completed 0	RD-REQ0
1	RY1092	0		

3 Method of control via EtherCAT communication

3-1 Guidance

If you are new to the AR Series FLEX built-in controller type, read this section to understand the operating methods along with the operation flow.

- Operation condition

Here, the motor is supposed to be operated under the following conditions.

- NETCO1-ECT node address: 1
 - Number of divers connected: 1
 - Driver address number: 0
 - Driver termination resistor: Enabled

Note - Before operating the motor, check the condition of the surrounding area to ensure safety.

- Before starting guidance, import the ESI file to the EtherCAT Configuration Tool of the PLC and register the PLC configuration in advance. For details about ESI file, contact your nearest Oriental Motor sales office.
memo The termination resistor for the NETCO1-ECT is built into the product. This product can be used without setting the termination resistor.

STEP 1 Check the installation and connection

■ AC power input driver

DC power input driver

*1 This cable is provided as our product. When the length of the motor cable is not enough, purchase it separately.
*2 These cables are provided as our products. Purchase them separately.

STEP 2 Set the parameters and switches of the NETCO1-ECT

Set the parameters and switches of the NETCO1-ECT.

1. Turn on the power to the NETCO1-ECT.

At this time, since parameters and switches are not set, the ALARM LED will be lit.
Move on the next procedure, and set parameters and switches.
2. Start the MEXEO2 and set the parameters.

Select the NETC EtherCAT compatible.

3. Set the "Connection (axis \#)" parameter of the driver connected to the NETC01-ECT to "Enable" using the MEXEO2.
The initial value in the "Connection (axis \#0)" parameter is set to "Enable." When the connected driver is one unit and the address number of the driver is " 0 ," it is not required to set the "Connection (axis \#)" parameter.

MEXE02 tree view	Parameter name	Description	Initial value
System	Connection (axis \#0)	Enables the address number of the driver connected to the NETC01-ECT.	Enable
	Connection (axis \#1) to Connection (axis \#15)	Setting range] Disable Enable	Disable

4. Set the switches of the NETCO1-ECT.

Set as the illustration below.

Setting contents	Switch	Factory setting
RS-485 communication transmission rate: 625 kbps	Set SW1 to 7	7
EtherCAT node address: 1	Set $\times 10$ of ECAT ID to $0, \times 1$ to 1	$1(\times 10: 0, \times 1: 1)$

5. Turn off the NETCO1-ECT power.
memo - When multiple drivers are connected, set the "Connection (axis \#)" parameters as many as the drivers.

- To update the changed "Connection (axis \#)" parameter, cycling the power supply is required.
- For the SW1, always set to "7." If the switch is set to the dial of "8" or higher, the communication switch setting error alarm will be generated when turning on the power. And do not set the switch to the dial of " 0 " to " 6 " because they cannot be used. (An alarm will not be generated.)

STEP 3 Set the switches of the driver

Set the following with the switches of the driver. For the protocol, select "OFF" (network converter).
The status becomes as shown in the following figures after setting.

Setting contents	AC power input	DC power input
Protocol: Network converter	Set No.2 of SW4 OFF	Set No.2 of SW3 OFF
Address number: 0	Set No.1 of SW4 to OFF, set ID to 0	Set No.1 of SW3 to OFF, set SW1 to 0
Termination resistor: ON	Set No.1 and No.2 of TERM. ON	Set No.4 of SW3 ON
Transmission rate: 625,000 bps	Set SW2 to 7	Set SW2 to 7

memo For the address number, set the one with the "Connection (axis \#)" parameter of the NETC01-ECT set to "Enable."

AC power input

- Driver front side
- Driver bottom side

DC power input

- Driver front side

- Driver top side

No.1: Sets the address number.
No.2: Sets the protocol.
No.3: Not used.
No.4: Sets the termination resistor (120 Ω).

STEP 4 Turn on the power and check the LED

Check that the LED of the driver and NETCO1-ECT are as shown in the figure.

- When the C-DAT/C-ERR LED (red) of the driver or the C-ERR LED (red) of the NETC01-ECT is lit: Check the transmission rate of RS-485 communication or the address number.
- When the ERR LED (red) of the NETCO1-ECT is blink: An EtherCAT communication error has been occurred. Check the error content.

STEP 5 Perform continuous operation via remote I/O of EtherCAT communication

Turn FWD of the address number 0 ON with the remote I/O of EtherCAT communication. Continuous operation for the operation data No. 0 is started at the $1,000 \mathrm{~Hz}$ of starting speed. Initial values of the remote I/O are as follows.

- MainDevice to NETC01-ECT

CoE Index	Subindex	Name	Type	Access	Description							
2600h	0	-	U8	R	Number of Sub-index: 2							
	1	I/O command (lower)	U8	RW	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
					NET-IN7	NET-IN6	NET-IN5	NET-IN4	NET-IN3	NET-IN2	NET-IN1	NET-INO
					No function	FREE	STOP	HOME	START	M2	M1	M0
	2	I/O command (upper)	U8	RW	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
					NET-IN15	NET-IN14	NET-IN13	NET-IN12	NET-IN11	NET-IN10	NET-IN9	NET-IN8
					RVS	FWD	-JOG	+JOG	SSTART	MS2	MS1	MSO

STEP $6 \quad$ Were you able to operate the motor properly?

How did it go? Were you able to operate the motor properly? If the motor does not function, check the following points:

- Is an alarm generated in the driver or NETC01-ECT?
- Are the power supply, the motor, and the RS-485 cable connected securely?
- Are the protocol, address number, transmission rate and termination resistor set correctly?
- Is the "Connection (axis \#)" parameter of the NETCO1-ECT set correctly?
- Is the C-DAT LED of NETC01-ECT turned off? Or is the C-ERR LED lit in red? (A RS-485 communication error has been occurred.)
- Is the ERR LED of NETC01-ECT blinks in red? (An EtherCAT communication error has been occurred.)
- Is the L/A LED of NETC01-ECT turnde off? Or is it blinks in green? (An EtherCAT communication error has been occurred.)
- Is the motor excited, or is the setting of the excitation method correct?
- Are the parameters of the driver set correctly?
- Is the operation stop signal input to the driver?

3-2 Basic operating procedures

This section explains how to perform positioning operation and monitor function as basic operating procedures. This is an example of the operating procedure for controlling via EtherCAT communication using the NETCO1-ECT.

Positioning operation

- Setting example
- Driver address number (Device address): 0
- Operation data No. 1
- Position (travel amount): 5,000 steps
- Operating procedure

1. Send the following remote register to set the position (travel amount) of the operation data No. 1 to 5,000 steps. When the TRIG is turned ON, the data set in the remote register is written.
[Remote register command of NETC01-ECT]

CoE Index	Sub- Index	Item	Type	Access	Description							
	0	-	U8	R	Sub-index number: 4							
	1	Axis	U8	RW	Reserved (not used)							
2800h	2	Command	U16	RW	Command code: 1201h (position of operation data No.1)							
number 0)	3	Data	INT32	RW	Data: 5,000 (travel amount: 5,000 steps)							
	4	TRIG	U8	RW	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
					-	-	-	-	-	-	-	TRIG

2. When the data writing is completed properly, the TRIG_R is turned ON. At this time, the STATUS remains OFF. Turn the TRIG OFF again after writing.
[Remote register response of NETCO1-ECT]

CoE Index	Sub- index	Item	Type	Access	Description							
2900h (address number 0)	0	-	U8	R	Sub-index number: 4							
	1	Axis	U8	R	Reserved (not used)							
	2	Command	U16	R	Command code response: 1201h							
	3	Data	INT32	R	Data response: 5,000							
		Status	U8	R	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	4				-	-	-	-	Command Error	Axis Error	STATUS	TRIG_R

memo - If the TRIG was turned ON, be sure to turn it OFF again.

- When the data is written with the TRIG, the data is saved in the RAM. If the data is saved in the non-volatile memory, execute the "Batch non-volatile memory (3E85h)" of the maintenance command.

3. Send the following remote I/O to turn the MO and START ON (9h)

Positioning operation is started. If the motor rotates for 5,000 steps, the positioning operation was successful.
[Remote I/O of NETCO1-ECT]

CoE Index	Sub- Index	Item	Type	Access	Description							
$\begin{gathered} \text { 2600h } \\ \text { (address } \\ \text { number 0) } \end{gathered}$	0	-	U8	R	Sub-index number: 2							
	1	I/O command (lower)	U8	RW	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
					NET-IN7	NET-IN6	NET-IN5	NET-IN4	NET-IN3	NET-IN2	NET-IN1	NET-INO
	2	I/O command (upper)	U8	RW	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
					NET-IN15	NET-IN14	NET-IN13	NET-IN12	NET-IN11	NET-IN10	NET-IN9	NET-IN8

[NET-IN of AR Series (initial value)]

CoE Index	Sub- Index	Item	Type	Access	Description							
2600h (address number 0)	0	-	U8	R	Sub-index number: 2							
	1	I/O command (lower)	U8	RW	NET-IN7	NET-IN6	NET-IN5	NET-IN4	NET-IN3	NET-IN2	NET-IN1	NET-INO
					No function	FREE	STOP	HOME	START	M2	M1	M0
	2	I/O command (upper)	U8	RW	NET-IN15	NET-IN14	NET-IN13	NET-IN12	NET-IN11	NET-IN10	NET-IN9	NET-IN8
					RVS	FWD	-JOG	+JOG	SSTART	MS2	MS1	MSO

Monitor function

- Setting example
- Driver address number (Device address): 0
- Operation data No. 0 (the speed was set to $1,000[\mathrm{~Hz}]$)
- Monitor item: Actual speed [r/min]
- Connected driver: AR Series

- Operating procedure

[Remote monitor command of NETCO1-ECT]

CoE Index	Sub- Index	Item	Type	Access	Description							
2A00h (address number 0)	0	-	U8	R	Sub-index number: 4							
	1	Axis	U8	RW	Address number: 0							
	2	Command	U16	RW	Command code: 2067h (monitor of actual speed [r/min])							
	3	Data	INT32	RW	Reserved (not used)							
	4	TRIG	U8	RW	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
					-	-	-	-	-	-	-	TRIG

2. Send the following remote I/O to turn the FWD (40h) of the address number 0 ON. Continuous operation in the forward direction is started.
[Remote I/O of NETCO1-ECT]

CoE Index	Sub- Index	Item	Type	Access	Description							
2600h (address number 0)	0	-	U8	R	Sub-index number: 2							
	1	I/O command (lower)	U8	RW	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
					NET-IN7	NET-IN6	NET-IN5	NET-IN4	NET-IN3	NET-IN2	NET-IN1	NET-INO
	2	I/O command (upper)	U8	RW	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
					NET-IN15	NET-IN14	NET-IN13	NET-IN12	NET-IN11	NET-IN10	NET-IN9	NET-IN8

[NET-IN of AR Series (initial value)]

CoE Index	Sub- Index	Item	Type	Access	Description							
2600h (address number 0)	0	-	U8	R	Sub-index number: 2							
	1	I/O command (lower)	U8	RW	NET-IN7	NET-IN6	NET-IN5	NET-IN4	NET-IN3	NET-IN2	NET-IN1	NET-INO
					No function	FREE	STOP	HOME	START	M2	M1	M0
	2	I/O command (upper)	U8	RW	NET-IN15	NET-IN14	NET-IN13	NET-IN12	NET-IN11	NET-IN10	NET-IN9	NET-IN8
					RVS	FWD	-JOG	+JOG	SSTART	MS2	MS1	MSO

3. If the data of the address number 0 is monitored by the remote monitor response, the communication was successful.
The TRIG_R is turned ON while the monitor is performed properly. At this time, the STATUS remains OFF.
memo The monitor is continued to update while the TRIG of the remote monitor command is being ON.
[Remote monitor response of NETCO1-ECT]

CoE Index	Sub- Index	Item	Type	Access	Description							
2B00h (address number 0)	0	-	U8	R	Sub-index number: 4							
	1	Axis	U8	R	Address number response: 0							
	2	Command	U16	R	Command code response: 2067h							
	3	Data	INT32	R	Monitor data: 1,000							
	4	Status	U8	R	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
					-	-	-	-	Command Error	Axis Error	STATUS	TRIG_R

4. Turn the TRIG OFF again to finish the monitor.

4 Method of control via MECHATROLINK communication

4-1 Guidance

If you are new to this type, read this section to understand the operating methods along with the operation flow. This section explains how to control via MECHATROLINK-II communication in combination with the network converter NETCO1-M2.

- Operation condition

Here, the motor is supposed to be operated under the following conditions.

[^19]Before operating the motor, check the condition of the surrounding area to ensure safety.

STEP 1 Check the installation and connection

AC power input driver

* These products are provided as our products. Purchase them separately.

- DC power input driver

*1 These products are provided as our products. Purchase them separately.
7 Method of control via industrial network
*2 This cable is provided as our product. When the length of the motor cable is not enough, purchase it separately.

STEP 2 Set the parameters and switches of the NETC01-M2

Set the parameters and switches of the NETC01-M2.

1. Tun on the power supply to the NETC01-M2.
2. Start the MEXEO2 and set the parameters.

Select the "NETC MECHATROLINK-II compatible."

3. Set the "Communication (address number)" parameter of the driver connected to the NETC01-M2 to "Effective" using the MEXEO2.

		吕总
NETC MECHATROLINK-II compatible Parameter Application . Common . System	System	
	Communication (address number 0)	ect
	Communication (address number 1)	isable
	Communication (address number 2)	Disable
	Communication (address number 3)	Disable
	Communication (address number 4)	Disable
	Communication (address number 5)	Disable
	Communication (address number 6)	Disable
	Communication (address number 7)	Disable

MEXE02 tree view	Parameter name	Description	Initial value
System	Communication (address number 0) to Communication (address number 15)	Enables the address number of the driver connected to the NETC01-M2. ISetting range] Disable Effective	Disable

memo - Since parameters of the network converter cannot be set via MECHATROLINK communication, set them by using the MEXE02.

- When multiple drivers are connected, set the "Communication (address number)" parameters as many as the drivers.
- The "Communication (address number)" parameter is enabled after the power is cycled.

4. Set the switches of the NETCO1-M2.

Refer to the NETC01-M2 USER MANUAL for the setting method.

- MECHATROLINK-II station address
- RS-485 transmission rate
- Remote I/O occupancy size
- Number of transmission bytes

5. Turn off the power supply to the NETCO1-M2.

STEP $3 \quad$ Set the switches of the driver

Set the following with the switches of the driver. For the protocol, select "OFF" (network converter).
The status becomes as shown in the following figures after setting.

Setting contents	AC power input driver	DC power input driver
Protocol: Network converter	Set No.2 of SW4 to OFF	Set No.2 of SW3 to OFF
Address number: 0	Set No. 1 of SW4 to OFF, ID to 0	Set SW1 to 0, No.1 of SW3 to OFF
Termination resistor: ON	Set No. 1 and No.2 of TERM to ON	Set No.4 of SW3 to ON
Transmission rate: 625,000 bps	Set SW2 to 7	Set SW2 to 7

memo For the address number, select the one with the "Communication (address number)" parameter of the NETC01-M2 set to "Effective."

AC power input driver

- Driver front side
- Driver bottom side

- DC power input driver

- Driver front side

Driver top side

No.1: Sets the address number.
No.2: Sets the protocol.
No.3: Not used.
No.4: Sets the termination resistor (120 Ω).

STEP 4 Turn on the power and check the LED

Check that the LED of the driver and NETC01-M2 are as shown in the figure.

AC power input driver \quad DC power input driver \quad Network converter

- When the C-DAT/C-ERR LED (red) of the driver or the C-ERR (red) of the NETC01-M2 is lit:

Check the transmission rate of RS-485 communication or the address number.

- When the ERR (red) of the NETC01-M2 is lit:

An MECHATROLINK communication error has occured. Check the error content.

STEP 5
 Perform continuous operation via remote I/O of MECHATROLINK communication

Turn FWD of the address number 0 ON with the I/O command of MECHATROLINK communication. Continuous operation is started.
Initial values of the I/O commands are as follows.

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
NET-IN15 $[$ RVS $]$	NET-IN14 $[F W D]$	NET-IN13 $[-J O G]$	NET-IN12 $[+J O G]$	NET-IN11 $[$ [SSTART $]$	NET-IN10 $[M S 2]$	NET-IN9 $[M S 1]$	NET-IN8 $[M S 0]$
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
NET-IN7 $[$ Not used $]$	NET-IN6 $[$ [FREE $]$	NET-IN5 $[S T O P]$	NET-IN4 $[H O M E]$	NET-IN3 $[S T A R T]$	NET-IN2 $[M 2]$	NET-IN1 $[M 1]$	NET-IN0 $[M 0]$

STEP $6 \quad$ Were you able to operate the motor properly?

How did it go? Were you able to operate the motor properly? If the motor does not function, check the following points:

- Is an alarm generated in the driver or NETCO1-M2?
- Are the power supply, the motor, and the RS-485 cable connected securely?
- Are the protocol, address number, transmission rate and termination resistor set correctly?
- Is the "Communication (address number)" parameter of the NETC01-M2 set correctly?
- Is the C-DAT/C-ERR LED turned off of the NETC01-M2? Or is it lit in red? (An communication error has been occurred.)
- Is the operation data set correctly?
- Is the motor excited, or is the setting of the excitation method correct?
- Are the parameters of the driver set correctly?
- Is the operation stop signal input to the driver?

4-2 Basic operation procedure

This section explains the execution methods of positioning operation and monitor function as a basic operation procedure.
As an example, here is an introduction of a procedure to control via MECHATROLINK-II communication using the NETC01-M2.

Positioning operation

As an example, here is a description how to execute the following positioning operation.

- Setting example
- Address number (Device address): 0
- Operation data No. 1
- Position (travel amount): 5,000 steps
- Operation procedure

1. Send the following remote register and set the position (travel amount) of the operation data No. 1 to 5,000 steps. The data set to the remote register is written.
When writing is complete, TRIG_R is turned ON.
Remote register of the NETCO1-M2

Byte	Part	Type	Command	Input example	Description
23	Data field	Remote register	Register address number	0	Address number 0
24					
25			Command code	1201h + 4000h	Value to be written to the
26			+ TRIG	$=5201 \mathrm{~h}$ *	No. 1 + TRIG
27			DATA	1388h	Position (travel amount) 5,000 steps
28					
29					
30					

* From the list of " $6-4$ Operation data" on p.309, we can see that the command code (WRITE) of "Position No. 1 " is 1201 h . Since the command code and the command execute request (TRIG) are written with the same command in MECHATROLINK communication, write "5201h" with the code (4000h) of TRIG added.

2. Check that TRIG_R is turned ON, then send the following remote register and turn TRIG OFF again.

Remote register of the NETC01-M2

Byte	Part	Type	Command	Input example	Description
25	Data field	Remote register	$\begin{aligned} & \text { Command code } \\ & + \text { TRIG } \end{aligned}$	0	Turn TRIG OFF
26				0	

memo - Be sure to turn TRIG OFF again after turning it ON.

- Data is stored in RAM when written in command execute request TRIG. When saving the data to the non-volatile memory, execute the "Batch NV memory write" of the maintenance command.

3. Send the following remote I / O and turn MO of the address number 0 and START ON.

Positioning operation is started. When the motor has rotated for 5,000 steps, communication has succeeded.
Remote I/O of the NETC01-M2

Byte	Part	Type	Command	Input example	Description
7	Data field	Remote I/O	Address number "0" remote I/O input	9h	Turn M0 and START ON
8					

Communication format (initial value) of remote I/O input

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
NET-IN15 [RVS] $]$	NET-IN14 $[$ [FWD $]$	NET-IN13 $[-J O G]$	NET-IN12 $[+J O G]$	NET-IN11 $[$ [SSTART $]$	NET-IN10 $[M S 2]$	NET-IN9 $[M S 1]$	NET-IN8 $[M S 0]$
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
NET-IN7 [Not used] $]$	NET-IN6 $[$ [FREE]	NET-IN5 $[S T O P]$	NET-IN4 $[H O M E]$	NET-IN3 $[S T A R T]$	NET-IN2 $[M 2]$	NET-IN1 $[M 1]$	NET-IN0 $[M 0]$

- Monitor function

- Setting example
- Address number (Device address): 0
- Monitor item: Feedback speed [r/min]

- Operation procedure

1. Send the following remote register and monitor the feedback speed of the address number 0 . Monitoring of the feedback speed of the address number 0 is started.

Remote register of the NETC01-M2

Byte	Part	Type	Command	Input example	Description
23	Data field	Remote register	Register address	0	Address number 0
24			number	0	
25			Command code	$2067 h+4000 h$	Monitoring of the feedback
26			+ TRIG	$=6067 \mathrm{~h} *$	speed + TRIG
27			DATA		
28					
29					
30					

* From the list of "6-3 Monitor command" on p.307, we can see that the command code (WRITE) of "Feedback speed monitor" is 2067h. Since the command code and the command execute request (TRIG) are written with the same command in MECHATROLINK communication, write " 6067 h " with the code (4000h) of TRIG added.

2. Send the following remote I/O and turn FWD of the address number 0 ON.

Continuous operation in the forward direction is started
Remote I/O of the NETC01-M2

Byte	Part	Type	Command	Input example	Description
7	Data field	Remote I/O	Address number "0" remote I/O input	4000h	Turn FWD
8					ON

Communication format (initial value) of remote I/O input

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
NET-IN15 [RVS] $]$	NET-IN14 $[$ [FWD]	NET-IN13 $[-J O G]$	NET-IN12 $[+J O G]$	NET-IN11 $[$ [SSTART $]$	NET-IN10 $[M S 2]$	NET-IN9 $[M S 1]$	NET-IN8 $[M S 0]$
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
NET-IN7	NET-IN6	NET-IN5	NET-IN4	NET-IN3	NET-IN2	NET-IN1	NET-IN0
[Not used]	$[$ FREE]	$[$ [STOP]	$[H O M E]$	$[S T A R T]$	$[M 2]$	$[M 1]$	$[M 0]$

Monitoring of the feedback speed is continued while TRIG is ON.
The read value is reflected to the response area of the remote register.
Remote register of the NETCO1-M2

Byte	Part	Type	Response	Output example	Description
23	Data field	Remote register	Register address	0	Address number 0
24			number response		
25			Command code		Monitoring of the
26			TRIG response + STATUS		
27			DATA response	003Ch	Read value (example: $60 \mathrm{r} / \mathrm{min}$)
28					
29					
30					

3. To finish monitoring, send the following remote register and turn TRIG OFF again.

Remote register of the NETCO1-M2

| Byte | Part | Type | Command | Input example | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 25 | Data | Remote | Command code + | | |
| field | TRIG | | 0 | Turn TRIG OFF | |
| 26 | register | | | | |

4-3 Field map of the NETCO1-M2

Update (asynchronous) of the remote I/O data is performed with the "DATA_RWA" command (50h).
When the remote I/O occupancy size is 16 bit mode and the number of transmission bytes is 32 bytes (factory setting), the I/O field map is as follows. For other I/O field maps, refer to the NETC01-M2 USER MANUAL.

4-4 Field map of the NETCO1-M3

Update (asynchronous) of the remote I/O data is performed with the "DATA_RWA" command (20h).
When the remote I/O occupancy size is 16 bit mode and the number of transmission bytes is 32 bytes (factory setting), the I/O field map is as follows. For other I/O field maps, refer to the NETC01-M3 USER MANUAL.

Byte	Type	Command	Response
0	-	DATA_RWA (20h)	DATA_RWA (20h)
1	-	WDT	RWDT
2	-	CMD	ST
3	-	CMD_CTR	CMD_STAT
4	-		
5	-	Reserve	迷ion st
6	Remote I/O	Address number "0" remote I/O input	Address number "0" remote I/O output
7			
8		Address number "1" remote I/O input	Address number "1" remote I/O output
9			
10		Address number "2" remote I/O input	Address number "2" remote I/O output
11			
12		Address number "3" remote I/O input	Address number "3" remote I/O output
13			
14		Address number "4" remote I/O input	Address number "4" remote I/O output
15			
16		Address number "5" remote I/O input	Address number "5" remote I/O output
17			
18		Address number "6" remote I/O input	Address number "6" remote I/O output
19			
20		Address number "7" remote I/O input	Address number "7" remote I/O output
21			
22	Remote register	Register address number	Register address number response
23			
24		Command code + TRIG	Command code response + TRIG response + STATUS
25			
26		DATA	DATA response
27			
28			
29			
30	-	Reserved	Reserved
31	-		

4-5 Communication formats

The following are communication formats between the driver and NETC01-M2 (NETC01-M3).

- Remote I/O input

Details of remote I/O \Rightarrow p. 302

- In case of 8 axes connection mode [16 bit mode]
[]: Initial value

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
NET-IN15 [RVS]	NET-IN14 [FWD]	NET-IN13 [-JOG]	$\begin{aligned} & \text { NET-IN12 } \\ & {[+J O G]} \end{aligned}$	NET-IN11 [SSTART]	NET-IN10 [MS2]	NET-IN9 [MS1]	NET-IN8 [MSO]
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
NET-IN7 [Not used]	NET-IN6 [FREE]	NET-IN5 [STOP]	NET-IN4 [HOME]	NET-IN3 [START]	NET-IN2 [M2]	NET-IN1 [M1]	NET-INO [M0]

- In case of 16 axes connection mode [8 bit mode]
[]: Initial value

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
NET-IN7	NET-IN6	NET-IN5	NET-IN4	NET-IN3	NET-IN2	NET-IN1	NET-IN0
[Not used]	$[$ [FREE $]$	$[S T O P]$	$[H O M E]$	$[$ START $]$	$[M 2]$	$[M 1]$	$[M 0]$

- Remote I/O output

Details of remote I/O \Rightarrow p. 302

- In case of 8 axes connection mode [16 bit mode]
[]: Initial value

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
NET-OUT15 [TLC]	NET-OUT14 [END]	NET-OUT13 [MOVE]	NET-OUT12 $[$ TIM]	NET-OUT11 [AREA3]	NET-OUT10 [AREA2]	NET-OUT9 [AREA1]	NET-OUT8 $[S-B S Y] ~$
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
NET-OUT7 [ALM]	NET-OUT6 [WNG]	NET-OUT5 [READY]	NET-OUT4 [HOME-P]	NET-OUT3 [START_R]	NET-OUT2 [M2_R]	NET-OUT1 [M1_R]	NET-OUT0 [M0_R]

- In case of 16 axes connection mode [8 bit mode]
[]: Initial value

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
NET-OUT7	NET-OUT6	NET-OUT5	NET-OUT4	NET-OUT3	NET-OUT2	NET-OUT1	NET-OUT0
[ALM]	$[$ WNG $]$	[READY]	$[$ HOME-P]	$[$ START_R]	$\left[M 2 _R\right]$	$\left[M 1 _R\right]$	$\left[M 0 _R\right]$

Remote register input

- Command [NETC01-M2 (NETC01-M3) to driver]

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
-	TRIG	Command code					
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Command code							
DATA							

- Description

Name	Description	Setting range
TRIG	This is a handshake trigger to execute a command code. When TRIG is changed from 0 to 1, the command code and DATA are executed.	0: No action $1:$ Execute
Command code	Specifies the command codes of reading and writing of parameters, monitoring, and maintenance.	-
DATA	This is the data writing to the driver (little endian).	-

■ Remote register output

- Response [Driver to NETC01-M2 (NETCO1-M3)]

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
STATUS	TRIG_R	Command code					
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Command code							
DATA_R							

- Description

Name	Description	Setting range
STATUS	Indicates the result of execution of the command code.	0: Normal 1: Abnormal
TRIG_R	This is a handshake trigger to indicate completion of execution of the command code. When execution of the command code is complete, TRIG_R changes from 0 to 1.	0: Not processed 1: Execution completed
Command code	The response returns the command code of the command.	-
DATA_R	This is the data reading from the driver (little endian).	-

5 Details of remote I/O

Remote I/Os are common to all network converters.

5-1 Input signals to the driver

The input signals shown below can be assigned to the NET-INO to NET-IN15 of the remote I/O using the parameters. Refer to the following table for the assignments of the NET-INO to NET-IN15. The value in [] is the initial value. For details on parameter, refer to "6-5 User parameters" on p.310.

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
NET-IN15 [RVS]	NET-IN14 [FWD]	$\begin{gathered} \text { NET-IN13 } \\ \text { [-JOG] } \end{gathered}$	$\begin{gathered} \text { NET-IN12 } \\ {[+J O G]} \end{gathered}$	NET-IN11 [SSTART]	$\begin{aligned} & \text { NET-IN10 } \\ & \text { [MS2] } \end{aligned}$	NET-IN9 [MS1]	NET-IN8 [MSO]
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
NET-IN7 [No function]	NET-IN6 [FREE]	NET-IN5 [STOP]	NET-IN4 [HOME]	NET-IN3 [START]	NET-IN2 [M2]	NET-IN1 [M1]	NET-INO [MO]

Signal name	Function	Setting range
No function	Set when the input terminal is not used.	-
FWD	Execute continuous operation in the positive direction.	0 : Deceleration stop 1: Operation
RVS	Execute continuous operation in the negative direction.	
HOME	Execute return-to-home operation.	0: No operation 1: Start operation
START	Execute positioning operation.	
SSTART	Execute sequential positioning operation.	
+JOG	Execute JOG operation in the positive direction.	
-JOG	Execute JOG operation in the negative direction.	
MS0 to MS5	Execute direct positioning operation of the operation data No. set by the I/O parameter.	
FREE	Stop the motor excitation and release the electromagnetic brake.	0 : No operation 1: Motor non-excitation, electromagnetic brake release
C-ON	Switch the motor excitation between excitation and non-excitation.	0 : Motor non-excitation 1: Motor excitation
STOP	Stop of the motor operation.	0 : No operation 1: Stop operation
ALM-RST	Reset the current alarm.	0 : No operation 1: Reset alarm
P-PRESET	Execute position preset.	0: No operation 1: Execute preset
P-CLR	This cannot be used.	-
HMI	Release of the function limitation of the MEXEO2 or OPX-2A.	0 : Function limitation 1: Function limitation release
R0 to R15	General signals. Use these signals when controlling the system via RS-485 communication.	$\begin{aligned} & \hline \text { 0: OFF } \\ & \text { 1:ON } \end{aligned}$
M0 to M5	Selects the operation data No. using these six bits. Refer $p .93$ for details on the combination.	$\begin{aligned} & \hline \text { 0: OFF } \\ & \text { 1:ON } \end{aligned}$ (Operation data Nos. 0 to 63 can be selected.)

memo - Do not assign the same input signal to multiple input terminals. When the same input signal is assigned to multiple input terminals, the function will be executed if any of the terminals becomes active.

- This function is executed when the ALM-RST input is turned from ON (1) to OFF (0). This function is executed when the P-PRESET input is turned from OFF (0) to ON (1).
- When the C-ON input and HMI input are not assigned to the input terminals, these inputs will always be set to $\mathrm{ON}(1)$. When assigning to both direct I/O and remote I/O, the function will be executed when both of them are set to $\mathrm{ON}(1)$.

5-2 Output signals from the driver

The output signals shown below can be assigned to the NET-OUTO to NET-OUT15 of the remote I/O using the parameters.
Refer to the following table for the assignments of the NET-OUTO to NET-OUT15. The value in [] is the initial value. For details on parameter, refer to " $6-5$ User parameters" on p.310.

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
NET-OUT15 [TLC]	NET-OUT14 [END]	NET-OUT13 [MOVE]	NET-OUT12 [TIM]	NET-OUT11 [AREA3]	NET-OUT10 [AREA2]	NET-OUT9 [AREA1]	NET-OUT8 [S-BSY]
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
NET-OUT7 [ALM]	NET-OUT6 [WNG]	NET-OUT5 [READY]	NET-OUT4 [HOME-P]	NET-OUT3 [START_R]	$\begin{aligned} & \text { NET-OUT2 } \\ & {[\text { M2_R] }} \end{aligned}$	NET-OUT1 [M1_R]	$\begin{aligned} & \text { NET-OUTO } \\ & \text { [MO_R] } \end{aligned}$

Signal name	Function	Data read
No function	Set when the output terminal is not used.	-
FWD_R	Output in response to the FWD input.	$\begin{aligned} & 0: \text { OFF } \\ & 1: O N \end{aligned}$
RVS_R	Output in response to the RVS input.	
HOME_R	Output in response to the HOME input.	
START_R	Output in response to the START input.	
SSTART_R	Output in response to the SSTART input.	
+JOG_R	Output in response to the +JOG input.	
-JOG_R	Output in response to the -JOG input.	
MSO_R to MS5_R	Output in response to the MS0 to MS5 input.	
FREE_R	Output in response to the FREE input.	
C-ON_R	Output in response to the C-ON input.	
STOP_R	Output in response to the STOP input.	
R0 to R15	Output the status of the general signal R0 to R15.	
M0_R to M5_R	Output in response to the M0 to M5 input.	
+LS_R	Output in response to the +LS input.	
-LS_R	Output in response to the -LS input.	
HOMES_R	Output in response to the HOMES input.	
SLIT_R	Output in response to the SLIT input.	
ALM	Output the alarm status of the driver (normally open).	0 : Alarm not present 1: Alarm present
WNG	Output the warning status of the driver.	0 : Warning not present 1:Warning present
READY	Output when the driver is ready.	0 : Not ready 1: Ready
MOVE	Output while the motor operates.	0: Motor stopped 1: Motor operating
END	Output when the positioning operation is completed.	0 : Motor operating 1: Motor operating completion

Signal name	Function	Data read
HOME-P	Output when the motor is in home.	0: Not home $1:$ Home
TLC	Output when the load is outside of the motor torque range.	0: Inside torque range $1:$ Outside torque range
TIM	Output once every 7.2 ${ }^{\circ}$ rotation of the motor output shaft.	0: OFF $1:$ ON
AREA1 to AREA3	Output when the motor is within the area.	0: Outside area $1:$ Inside area
S-BSY	Output when the driver is in internal processing state.	0: OFF $1:$ ON
MPS*	Output while the driver main power is on.	0: OFF $1:$ ON

6
 Command code list

Command codes are common to all network converters.

6-1 Group function

The driver has a group function. Multiple devices are made into a group and a operation command is sent to all devices in the group at once.

Group composition

A group consists of one parent device and child devices.

■ Group address

To perform a group send, set a group address to the child devices to be included in the group.
The child devices to which the group address has been set can receive a command sent to the parent device.
The operation command will be sent to the child devices in the same group by sending it to the parent device.

- Parent device

No special setting is required on the parent device to perform a group send. The address of the parent device becomes the group address.

- Child device

Use a "Group (1018h)" to set a group address to each child device.
Only remote I/O input can execute the group function. Read from commands and parameters or write to commands and parameters cannot be executed.

- Group setting

The group setting is not saved in the non-volatile memory even when the maintenance command "Batch non-volatile memory write" executes.

Command code		Name	Description	Initial value
Read	Write			
24 $(0018 \mathrm{~h})$	4120 $(1018 \mathrm{~h})$	Group	Sets the group address. [Setting range] $-1:$ Individual (No group setting) 0 to $15:$ Group address (Address number of parent device)	-1

* Set in the 0 to 11 range when using the NETC01-CC, and set in the 0 to 15 range when using other network converter.

Example for setting of the group function

Set as follows when making a group by setting the driver of address number 0 to the parent device and by setting the driver of address number 1 and 2 to the child devices.

Network converter

Driver of address number 0 "Group" command: -1 (individual)

Driver of address number 1
"Group" command: 0

Driver of address number 2
"Group" command: 0

This is a timing chart for when assigning the START to NET-IN3 (remote I/O) of the driver in the group.

memo When inputting a remote I/O to the parent device, the motors of the parent device and child devices will operate. The motors will not operate if the remote I/O is input to the child devices.

6-2 Maintenance command

These commands are used to clear the alarm records and warning records. They are also used to execute the batch processing for the non-volatile memory.

Command code	Name	Description	Setting range
$\begin{aligned} & 12480 \\ & (30 \mathrm{COh}) \end{aligned}$	Reset alarm	Resets the alarms that are present. Some alarms cannot be reset with the "reset alarm."	1: Execute
$\begin{aligned} & 12482 \\ & (30 C 2 h) \end{aligned}$	Clear alarm records	Clears alarm records.	
$\begin{gathered} 12483 \\ (30 \mathrm{C} 3 \mathrm{~h}) \end{gathered}$	Clear warning records	Clears warning records.	
$\begin{gathered} 12484 \\ (30 \mathrm{C} 4 \mathrm{~h}) \end{gathered}$	Clear communication error records	Clears communication error records.	
$\begin{aligned} & 12485 \\ & (30 C 5 h) \end{aligned}$	P-PRESET execute	Updates the command position to the value of the "Preset position" parameter.	
$\begin{gathered} 12486 \\ (30 C 6 h) \end{gathered}$	Configuration	Executes the parameter recalculation and the setup.	
$\begin{aligned} & 12487 \\ & (30 \mathrm{C} 7 \mathrm{~h}) \end{aligned}$	All data initialization	Resets the operation data and parameters saved in the non-volatile memory to the initial value. Note that "Communication parity", "Communication stop bit", and "Transmission waiting time" parameters are not initialized.	
$\begin{gathered} 12488 \\ (30 \mathrm{C} 8 \mathrm{~h}) \end{gathered}$	Batch non-volatile memory read	Reads the operation data and parameters saved in the non-volatile memory, to the RAM. All operation data and parameters previously saved in the RAM are overwritten.	
$\begin{gathered} 12489 \\ (30 \mathrm{C} 9 \mathrm{~h}) \end{gathered}$	Batch non-volatile memory write	Writes the operation data and parameters saved in the RAM to the non-volatile memory.	

memo The non-volatile memory can be rewritten approximately 100,000 times.

6-3 Monitor command

These commands are used to monitor the driver condition.

Command code	Name	Description
$\begin{gathered} 8256 \\ (2040 \mathrm{~h}) \end{gathered}$	Present alarm	Monitors the present alarm code.
$\begin{gathered} 8257 \\ (2041 \mathrm{~h}) \end{gathered}$	Alarm record 1	Monitors the alarm records 1 to 10.
$\begin{gathered} \hline 8258 \\ (2042 \mathrm{~h}) \end{gathered}$	Alarm record 2	
$\begin{gathered} 8259 \\ (2043 \mathrm{~h}) \end{gathered}$	Alarm record 3	
$\begin{gathered} 8260 \\ (2044 \mathrm{~h}) \end{gathered}$	Alarm record 4	
$\begin{gathered} \hline 8261 \\ (2045 \mathrm{~h}) \end{gathered}$	Alarm record 5	
$\begin{gathered} \hline 8262 \\ (2046 \mathrm{~h}) \end{gathered}$	Alarm record 6	
$\begin{gathered} 8263 \\ (2047 \mathrm{~h}) \end{gathered}$	Alarm record 7	
$\begin{gathered} \hline 8264 \\ (2048 \mathrm{~h}) \end{gathered}$	Alarm record 8	
$\begin{gathered} 8265 \\ (2049 \mathrm{~h}) \end{gathered}$	Alarm record 9	
$\begin{gathered} \hline 8266 \\ (204 \mathrm{Ah}) \end{gathered}$	Alarm record 10	
$\begin{gathered} 8267 \\ (204 \mathrm{Bh}) \end{gathered}$	Present warning	Monitors the present warning code.
$\begin{gathered} 8268 \\ (204 \mathrm{Ch}) \end{gathered}$	Warning record 1	Monitors the warning records 1 to 10.
$\begin{gathered} 8269 \\ (204 \mathrm{Dh}) \end{gathered}$	Warning record 2	
$\begin{gathered} \hline 8270 \\ \text { (204Eh) } \end{gathered}$	Warning record 3	
$\begin{gathered} \hline 8271 \\ (204 \mathrm{Fh}) \end{gathered}$	Warning record 4	
$\begin{gathered} \hline 8272 \\ (2050 \mathrm{~h}) \end{gathered}$	Warning record 5	
$\begin{gathered} 8273 \\ (2051 \mathrm{~h}) \end{gathered}$	Warning record 6	
$\begin{gathered} 8274 \\ (2052 \mathrm{~h}) \end{gathered}$	Warning record 7	
$\begin{gathered} 8275 \\ (2053 \mathrm{~h}) \end{gathered}$	Warning record 8	
$\begin{gathered} \hline 8276 \\ (2054 \mathrm{~h}) \end{gathered}$	Warning record 9	
$\begin{gathered} \hline 8277 \\ (2055 \mathrm{~h}) \end{gathered}$	Warning record 10	
$\begin{gathered} \hline 8279 \\ (2057 \mathrm{~h}) \end{gathered}$	Communication error code record 1	Monitors the communication error records 1 to 3 that have occurred in the past.
$\begin{gathered} 8280 \\ (2058 \mathrm{~h}) \\ \hline \end{gathered}$	Communication error code record 2	
$\begin{gathered} 8281 \\ (2059 \mathrm{~h}) \end{gathered}$	Communication error code record 3	

6-4 Operation data

Up to 64 operation data can be set (data Nos. 0 to 63).
When the operation data is changed, a recalculation and setup will be performed after the operation is stopped and the changed value will be update.

Command code		Name	Setting range	Initial value
Read	Write			
$\begin{gathered} 512 \\ (0200 \mathrm{~h}) \\ \text { to } \\ 575 \\ (023 \mathrm{Fh}) \end{gathered}$	$\begin{gathered} 4608 \\ (1200 \mathrm{~h}) \\ \text { to } \\ 4671 \\ (123 \mathrm{Fh}) \end{gathered}$	Position No. 0 to Position No. 63	$-8,388,608$ to 8,388,607 step	0
$\begin{gathered} 576 \\ (0240 \mathrm{~h}) \\ \text { to } \\ 639 \\ (027 \mathrm{Fh}) \end{gathered}$	$\begin{gathered} 4672 \\ (1240 \mathrm{~h}) \\ \text { to } \\ 4735 \\ \text { (127Fh) } \end{gathered}$	Operating speed No. 0 to Operating speed No. 63	0 to 1,000,000 Hz	1,000
$\begin{gathered} 640 \\ (0280 \mathrm{~h}) \\ \text { to } \\ 703 \\ (02 \mathrm{BFh}) \end{gathered}$	$\begin{gathered} 4736 \\ (1280 \mathrm{~h}) \\ \text { to } \\ 4799 \\ (12 \mathrm{BFh}) \end{gathered}$	Operation mode No. 0 to Operation mode No. 63	0: Incremental 1: Absolute	0
$\begin{gathered} 704 \\ \text { (02C0h) } \\ \text { to } \\ 767 \\ \text { (02FFh) } \end{gathered}$	$\begin{gathered} 4800 \\ (12 \mathrm{COh}) \\ \text { to } \\ 4863 \\ (12 \mathrm{FFh}) \end{gathered}$	Operation function No. 0 to Operation function No. 63	0 : Single-motion 1: Linked-motion 2: Linked-motion 2 3: Push	0
$\begin{gathered} 768 \\ (0300 \mathrm{~h}) \\ \text { to } \\ 831 \\ \text { (033Fh) } \end{gathered}$	$\begin{gathered} \hline 4864 \\ (1300 \mathrm{~h}) \\ \text { to } \\ 4927 \\ (133 \mathrm{Fh}) \end{gathered}$	Acceleration No. 0 to Acceleration No. 63	$\begin{aligned} & 1 \text { to } 1,000,000 \\ & (1=0.001 \mathrm{~ms} / \mathrm{kHz} \text { or } 1=0.001 \mathrm{~s}) * 1 * 2 \end{aligned}$	1,000
$\begin{gathered} 832 \\ (0340 \mathrm{~h}) \\ \text { to } \\ 895 \\ \text { (037Fh) } \end{gathered}$	$\begin{gathered} \hline 4928 \\ (1340 \mathrm{~h}) \\ \text { to } \\ 4991 \\ (137 \mathrm{Fh}) \end{gathered}$	Deceleration No. 0 to Deceleration No. 63	$\begin{aligned} & 1 \text { to } 1,000,000 \\ & (1=0.001 \mathrm{~ms} / \mathrm{kHz} \text { or } 1=0.001 \mathrm{~s}) * 1 * 2 \end{aligned}$	1,000
$\begin{gathered} 896 \\ (0380 \mathrm{~h}) \\ \text { to } \\ 959 \\ (03 \mathrm{BFh}) \end{gathered}$	$\begin{gathered} 4992 \\ (1380 \mathrm{~h}) \\ \text { to } \\ 5055 \\ (13 \mathrm{BFh}) \end{gathered}$	Push current No. 0 to Push current No. 63	0 to 1,000 ($1=0.1$ \%)	200
$\begin{gathered} 960 \\ (03 C 0 h) \\ \text { to } \\ 1023 \\ \text { (03FFh) } \end{gathered}$	$\begin{gathered} 5056 \\ (13 \mathrm{COh}) \\ \text { to } \\ 5119 \\ (13 \mathrm{FFh}) \end{gathered}$	Sequential positioning No. 0 to Sequential positioning No. 63	0: Disable 1: Enable	0
$\begin{gathered} 1024 \\ (0400 \mathrm{~h}) \\ \text { to } \\ 1087 \\ (043 \mathrm{Fh}) \end{gathered}$	$\begin{gathered} 5120 \\ (1400 \mathrm{~h}) \\ \text { to } \\ 5183 \\ (143 \mathrm{Fh}) \end{gathered}$	Dwell time No. 0 to Dwell time No. 63	0 to 50,000 ($1=0.001$ s)	0

*1 This item is effective when the "Acceleration/deceleration type" parameter is set to "Separate." If this parameter is set to "Common", the values of the "Common acceleration" and "Common deceleration" parameters will be used (initial value: separate).
*2 Acceleration/deceleration rate ($\mathrm{ms} / \mathrm{kHz}$) or acceleration/deceleration time (s) can be selected using "Acceleration/ deceleration unit" parameter. (initial value: acceleration/deceleration rate).

6-5 User parameters

- Timing for parameter to update

The parameters are saved in the RAM or non-volatile memory. The data saved in the RAM will be erased once the DC power is turned off. On the other hand, the parameters saved in the non-volatile memory will be retained even after the DC power supply is turned off.
When turning the driver DC power ON, the parameters saved in the non-volatile memory will be sent to the RAM. Then, the recalculation and setup for the parameters are executed in the RAM.

The parameters are written in the RAM area when setting via industrial network. To save the parameters written in the RAM to non-volatile memory, execute the "Batch non-volatile memory write" of the maintenance command. The parameters set with the MEXE02 will be saved in the non-volatile memory if "data writing" is performed.
When a parameter is changed, the timing for updating the new value varies depending on the parameter. See the following three types.
In this manual, each update timing is represented in an alphabet.

Notation	Update timing
A	Recalculation and setup are immediately executed when the parameter is written.
B	Recalculation and setup are executed when the operation is stopped.
C	Recalculation and setup are executed after Configuration is executed or the DC power supply is turned on again.

memo - The parameters are written in the RAM area when setting via industrial network. If parameters, which are required turning on the power again in order to update, are changed, be sure to save them in the non-volatile memory before turning off the power.

- The non-volatile memory can be rewritten approximately 100,000 times.

I/O parameter

Command code		Description	Setting range	Initial value	Update
READ	WRITE				
$\begin{gathered} 256 \\ (0100 \mathrm{~h}) \end{gathered}$	$\begin{aligned} & 4352 \\ & (1100 \mathrm{~h}) \end{aligned}$	STOP input action	0: Immediate stop 1: Deceleration stop 2: Immediate stop \& Current OFF 3: Deceleration stop \& Current OFF	1	A
$\begin{gathered} 257 \\ (0101 \mathrm{~h}) \end{gathered}$	$\begin{gathered} \hline 4353 \\ (1101 \mathrm{~h}) \end{gathered}$	Hardware overtravel	0 : Disable 1: Enable	1	A
$\begin{gathered} \hline 258 \\ (0102 \mathrm{~h}) \end{gathered}$	$\begin{gathered} \hline 4354 \\ (1102 \mathrm{~h}) \end{gathered}$	Overtravel action	0: Immediate stop 1: Deceleration stop	0	A
$\begin{gathered} 259 \\ (0103 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 4355 \\ (1103 \mathrm{~h}) \end{gathered}$	END signal range	0 to $180\left(1=0.1^{\circ}\right)$	18	A
$\begin{gathered} 260 \\ (0104 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 4356 \\ (1104 \mathrm{~h}) \end{gathered}$	Position complete output offset	-18 to $18\left(1=0.1^{\circ}\right)$	0	A
$\begin{gathered} 261 \\ (0105 \mathrm{~h}) \end{gathered}$	$\begin{gathered} \hline 4357 \\ (1105 \mathrm{~h}) \end{gathered}$	AREA1 positive direction position	$-8,388,608$ to 8,388,607 step	0	A
$\begin{gathered} 262 \\ (0106 \mathrm{~h}) \end{gathered}$	$\begin{gathered} \hline 4358 \\ (1106 \mathrm{~h}) \end{gathered}$	AREA1 negative direction position			
$\begin{gathered} 263 \\ (0107 \mathrm{~h}) \end{gathered}$	$\begin{gathered} \hline 4359 \\ (1107 \mathrm{~h}) \end{gathered}$	AREA2 positive direction position			
$\begin{gathered} 264 \\ (0108 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 4360 \\ (1108 \mathrm{~h}) \end{gathered}$	AREA2 negative direction position			
$\begin{gathered} 265 \\ (0109 \mathrm{~h}) \end{gathered}$	$\begin{gathered} \hline 4361 \\ (1109 \mathrm{~h}) \end{gathered}$	AREA3 positive direction position	$-8,388,608$ to 8,388,607 step	0	A
$\begin{gathered} 266 \\ (010 \mathrm{Ah}) \end{gathered}$	$\begin{gathered} \hline 4362 \\ (110 \mathrm{Ah}) \end{gathered}$	AREA3 negative direction position			

Command code		Description	Setting range	Initial value	Update
READ	WRITE				
$\begin{gathered} 267 \\ (010 \mathrm{Bh}) \end{gathered}$	$\begin{gathered} 4363 \\ \text { (110Bh) } \end{gathered}$	Minimum ON time for MOVE output	0 to 255 ms	0	A
$\begin{aligned} & 268 \\ & (010 \mathrm{Ch}) \end{aligned}$	$\begin{gathered} 4364 \\ \text { (110Ch) } \end{gathered}$	LS contact configration	0: Make (N.O.) 1: Brake (N.C.)	0	C
$\begin{gathered} 269 \\ (010 \mathrm{Dh}) \end{gathered}$	$\begin{gathered} \hline 4365 \\ (110 \mathrm{Dh}) \end{gathered}$	HOMES logic level			C
$\begin{gathered} \hline 270 \\ \text { (010Eh) } \end{gathered}$	$\begin{gathered} \hline 4366 \\ \text { (110Eh) } \end{gathered}$	SLIT logic level			C
$\begin{gathered} 2048 \\ (0800 \mathrm{~h}) \end{gathered}$	$\begin{gathered} \hline 6144 \\ (1800 \mathrm{~h}) \end{gathered}$	MSO operation No. selection	0 to 63	0	B
$\begin{gathered} \hline 2049 \\ (0801 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 6145 \\ (1801 \mathrm{~h}) \end{gathered}$	MS1 operation No. selection		1	
$\begin{gathered} 2050 \\ (0802 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 6146 \\ (1802 \mathrm{~h}) \end{gathered}$	MS2 operation No. selection		2	
$\begin{aligned} & 2051 \\ & (0803 \mathrm{~h}) \end{aligned}$	$\begin{gathered} 6147 \\ (1803 \mathrm{~h}) \end{gathered}$	MS3 operation No. selection		3	
$\begin{gathered} 2052 \\ (0804 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 6148 \\ (1804 \mathrm{~h}) \end{gathered}$	MS4 operation No. selection		4	
$\begin{gathered} \hline 2053 \\ (0805 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 6149 \\ (1805 \mathrm{~h}) \end{gathered}$	MS5 operation No. selection		5	
$\begin{gathered} 2054 \\ (0806 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 6150 \\ (1806 \mathrm{~h}) \end{gathered}$	HOME-P output function selection	0 : Home output 1: Return-to-home complete output	0	A

■ Motor parameter

Command code		Description	Setting range	Initial value	Update
READ	WRITE				
$\begin{gathered} 288 \\ (0120 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 4384 \\ (1120 \mathrm{~h}) \end{gathered}$	RUN current	0 to 1,000 ($1=0.1$ \%)	1,000	A
$\begin{gathered} 289 \\ (0121 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 4385 \\ (1121 \mathrm{~h}) \end{gathered}$	STOP current	0 to 500 ($1=0.1$ \%)	500	A
$\begin{gathered} 290 \\ (0122 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 4386 \\ (1122 h) \end{gathered}$	Position loop gain	1 to 50	10	A
$\begin{gathered} 291 \\ (0123 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 4387 \\ (1123 \mathrm{~h}) \end{gathered}$	Speed loop gain	10 to 200	180	A
$\begin{gathered} 292 \\ (0124 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 4388 \\ (1124 \mathrm{~h}) \end{gathered}$	Speed loop integral time constant	100 to 2,000 (1=0.1 ms)	1,000	A
$\begin{gathered} 293 \\ (0125 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 4389 \\ (1125 \mathrm{~h}) \end{gathered}$	Speed filter	0 to 200 ms	1	B
$\begin{gathered} 294 \\ (0126 \mathrm{~h}) \\ \hline \end{gathered}$	$\begin{gathered} \hline 4390 \\ (1126 \mathrm{~h}) \\ \hline \end{gathered}$	Moving average time	1 to 200 ms	1	B
$\begin{gathered} 2064 \\ (0810 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 6160 \\ (1810 \mathrm{~h}) \end{gathered}$	Filter selection	0: Speed filter 1: Moving average filter	0	C
$\begin{gathered} 2065 \\ (0811 \mathrm{~h}) \\ \hline \end{gathered}$	$\begin{gathered} \hline 6161 \\ (1811 \mathrm{~h}) \\ \hline \end{gathered}$	Speed difference gain 1	0 to 500	45	A
$\begin{gathered} 2066 \\ (0812 h) \end{gathered}$	$\begin{gathered} 6162 \\ (1812 h) \end{gathered}$	Speed difference gain 2	0 to 500	45	A
$\begin{aligned} & 2067 \\ & (0813 \mathrm{~h}) \end{aligned}$	$\begin{gathered} 6163 \\ (1813 \mathrm{~h}) \end{gathered}$	Control mode	0: Normal mode 1: Current control mode	0	C
$\begin{gathered} 2068 \\ (0814 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 6164 \\ (1814 \mathrm{~h}) \end{gathered}$	Smooth drive	0: Disable 1: Enable	1	C

- Operation parameter

Command code		Description	Setting range	Initial value	Update
READ	WRITE				
$\begin{gathered} 320 \\ (0140 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 4416 \\ (1140 \mathrm{~h}) \end{gathered}$	Common acceleration	$\begin{aligned} & 1 \text { to } 1,000,000(1=0.001 \mathrm{~ms} / \mathrm{kHz} \text { or } \\ & 1=0.001 \mathrm{~s})^{*} \end{aligned}$	1,000	B
$\begin{gathered} 321 \\ (0141 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 4417 \\ (1141 \mathrm{~h}) \end{gathered}$	Common deceleration	$\begin{aligned} & 1 \text { to } 1,000,000(1=0.001 \mathrm{~ms} / \mathrm{kHz} \text { or } \\ & 1=0.001 \mathrm{~s})^{*} \end{aligned}$	1,000	B
$\begin{gathered} 322 \\ (0142 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 4418 \\ (1142 h) \end{gathered}$	Starting speed	0 to $1,000,000 \mathrm{~Hz}$	500	B
$\begin{gathered} 323 \\ (0143 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 4419 \\ (1143 \mathrm{~h}) \end{gathered}$	JOG operating speed	1 to 1,000,000 Hz	1,000	B
$\begin{gathered} 324 \\ (0144 \mathrm{~h}) \end{gathered}$	$\begin{gathered} \hline 4420 \\ (1144 \mathrm{~h}) \end{gathered}$	Acceleration/deceleration rate of JOG	$\begin{aligned} & 1 \text { to } 1,000,000(1=0.001 \mathrm{~ms} / \mathrm{kHz} \text { or } \\ & 1=0.001 \mathrm{~s})^{*} \end{aligned}$	1,000	B
$\begin{gathered} 325 \\ (0145 \mathrm{~h}) \end{gathered}$	$\begin{gathered} \hline 4421 \\ (1145 \mathrm{~h}) \end{gathered}$	JOG starting speed	0 to $1,000,000 \mathrm{~Hz}$	500	B
$\begin{gathered} 326 \\ (0146 \mathrm{~h}) \end{gathered}$	$\begin{gathered} \hline 4422 \\ (1146 \mathrm{~h}) \end{gathered}$	Acceleration/deceleration type	0: Common 1:Separate	1	B
$\begin{gathered} 327 \\ (0147 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 4423 \\ (1147 \mathrm{~h}) \end{gathered}$	Acceleration/deceleration unit	$\begin{array}{\|l\|} \hline 0: \mathrm{ms} / \mathrm{kHz} \\ 1: \mathrm{s} \end{array}$	0	C
$\begin{gathered} 2080 \\ (0820 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 6176 \\ (1820 \mathrm{~h}) \end{gathered}$	Automatic return operation	0: Disable 1: Enable	0	C
$\begin{gathered} 2081 \\ (0821 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 6177 \\ (1821 \mathrm{~h}) \end{gathered}$	Operation speed of automatic return	1 to $1,000,000 \mathrm{~Hz}$	1,000	B
$\begin{gathered} 2082 \\ (0822 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 6178 \\ (1822 \mathrm{~h}) \end{gathered}$	Acceleration (deceleration) of automatic return	$\begin{aligned} & 1 \text { to } 1,000,000(1=0.001 \mathrm{~ms} / \mathrm{kHz} \text { or } \\ & 1=0.001 \mathrm{~s})^{*} \end{aligned}$	1,000	B
$\begin{gathered} 2083 \\ (0823 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 6179 \\ (1823 \mathrm{~h}) \end{gathered}$	Starting speed of automatic return	0 to 1,000,000 Hz	500	B
$\begin{gathered} 2084 \\ (0824 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 6180 \\ (1824 \mathrm{~h}) \end{gathered}$	JOG travel amount	1 to 8,388,607 step	1	B

* Acceleration/deceleration rate ($\mathrm{ms} / \mathrm{kHz}$) or acceleration/deceleration time (s) can be selected using "Acceleration/ deceleration unit" parameter. (initial value: acceleration/deceleration rate).

Home operation parameter

Command code		Description	Setting range	Initial value	Update
READ	WRITE				
$\begin{gathered} 352 \\ (0160 \mathrm{~h}) \end{gathered}$	$\begin{aligned} & 4448 \\ & (1160 \mathrm{~h}) \end{aligned}$	Home-seeking mode	0: 2-sensor mode 1:3-sensor mode 2: Push mode	1	B
$\begin{gathered} 353 \\ (0161 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 4449 \\ (1161 \mathrm{~h}) \end{gathered}$	Operating speed of homeseeking	1 to 1,000,000 Hz	1,000	B
$\begin{gathered} 354 \\ (0162 h) \end{gathered}$	$\begin{gathered} 4450 \\ (1162 \mathrm{~h}) \end{gathered}$	Acceleration/deceleration of home-seeking	$\begin{aligned} & 1 \text { to } 1,000,000(1=0.001 \mathrm{~ms} / \mathrm{kHz} \text { or } \\ & 1=0.001 \mathrm{~s})^{*} \end{aligned}$	1,000	B
$\begin{gathered} 355 \\ (0163 \mathrm{~h}) \end{gathered}$	$\begin{gathered} \hline 4451 \\ (1163 \mathrm{~h}) \end{gathered}$	Starting speed of homeseeking	1 to $1,000,000 \mathrm{~Hz}$	500	B
$\begin{gathered} 356 \\ (0164 \mathrm{~h}) \end{gathered}$	$\begin{gathered} \hline 4452 \\ (1164 \mathrm{~h}) \end{gathered}$	Position offset of home-seeking	$-8,388,608$ to 8,388,607 step	0	B
$\begin{gathered} 357 \\ (0165 \mathrm{~h}) \end{gathered}$	$\begin{gathered} \hline 4453 \\ (1165 \mathrm{~h}) \end{gathered}$	Starting direction of homeseeking	0: Negative direction 1: Positive direction	1	B
$\begin{gathered} 358 \\ (0166 h) \end{gathered}$	$\begin{gathered} 4454 \\ (1166 \mathrm{~h}) \end{gathered}$	SLIT detection with homeseeking	0: Disable 1: Enable	0	B
$\begin{gathered} 359 \\ (0167 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 4455 \\ (1167 \mathrm{~h}) \end{gathered}$	TIM signal detection with home-seeking	0: Disable 1: Enable	0	B
$\begin{gathered} 360 \\ (0168 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 4456 \\ (1168 \mathrm{~h}) \end{gathered}$	Operating current of homeseeking with push-motion	0 to 1,000 (1=0.1 \%)	1,000	B

* Acceleration/deceleration rate ($\mathrm{ms} / \mathrm{kHz}$) or acceleration/deceleration time (s) can be selected using "Acceleration/ deceleration unit" parameter. (initial value: acceleration/deceleration rate).

Alarm parameter

Command code		Description	Setting range	Initial value	Update
READ	WRITE				
$\begin{gathered} 384 \\ (0180 h) \end{gathered}$	$\begin{gathered} 4480 \\ (1180 \mathrm{~h}) \end{gathered}$	Overload alarm	1 to 300 ($1=0.1$ s)	50	A
$\begin{gathered} 385 \\ (0181 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 4481 \\ (1181 \mathrm{~h}) \end{gathered}$	Excessive position deviation alarm at current ON	1 to 30,000 ($1=0.01 \mathrm{rev}$)	300	A
$\begin{gathered} 388 \\ (0184 \mathrm{~h}) \\ \hline \end{gathered}$	$\begin{gathered} \hline 4484 \\ (1184 \mathrm{~h}) \\ \hline \end{gathered}$	Return-to-home incomplete alarm	0: Disable 1: Enable	0	C
$\begin{gathered} 2112 \\ (0840 h) \end{gathered}$	$\begin{aligned} & 6208 \\ & (1840 h) \end{aligned}$	Excessive position deviation alarm at current OFF	1 to 30,000 ($1=0.01 \mathrm{rev}$)	10,000	A

Warning parameter

Command code		Description	Setting range	Initial value	Update
READ	WRITE				
$\begin{gathered} 416 \\ (01 \mathrm{~A} 0 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 4512 \\ (11 A 0 h) \end{gathered}$	Overheat warning	40 to $85{ }^{\circ} \mathrm{C}$	85	A
$\begin{gathered} 417 \\ (01 \mathrm{~A} 1 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 4513 \\ (11 \mathrm{~A} 1 \mathrm{~h}) \end{gathered}$	Overload warning	1 to 300 ($1=0.1 \mathrm{~s}$)	50	A
$\begin{gathered} 418 \\ (01 A 2 h) \end{gathered}$	$\begin{gathered} 4514 \\ (11 A 2 h) \end{gathered}$	Overspeed warning	1 to 5,000 r/min	4,500	A
$\begin{gathered} 419 \\ (01 \mathrm{~A} 3 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 4515 \\ (11 \mathrm{~A} 3 \mathrm{~h}) \end{gathered}$	Overvoltage warning	- AC power input: 120 to 450 V - DC power input: 150 to 630 ($1=0.1 \mathrm{~V}$)	AC power input: 435 DC power input: 630	A
$\begin{gathered} 420 \\ (01 \mathrm{~A} 4 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 4516 \\ (11 \mathrm{~A} 4 \mathrm{~h}) \end{gathered}$	Undervoltage warning	- AC power input: 120 to 280 V - DC power input: 150 to 630 $(1=0.1 \mathrm{~V})$	AC power input: 120 DC power input: 180	A
$\begin{gathered} 421 \\ (01 A 5 h) \end{gathered}$	$\begin{gathered} 4517 \\ (11 \mathrm{~A} 5 \mathrm{~h}) \end{gathered}$	Excessive position deviation warning at current ON	1 to 30,000 (1=0.01 rev)	300	A

Coordinates parameter

Command code		Description	Setting range	Initial value	Update
READ	WRITE				
$\begin{gathered} 448 \\ (01 \mathrm{COh}) \end{gathered}$	$\begin{gathered} 4544 \\ (11 \mathrm{COh}) \end{gathered}$	Electronic gear A	1 to 65,535	1	C
$\begin{gathered} 449 \\ (01 \mathrm{C} 1 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 4545 \\ (11 \mathrm{C} 1 \mathrm{~h}) \end{gathered}$	Electronic gear B	1 to 65,535	1	C
$\begin{gathered} 450 \\ (01 C 2 h) \end{gathered}$	$\begin{gathered} 4546 \\ (11 \mathrm{C} 2 \mathrm{~h}) \end{gathered}$	Motor rotation direction	$\begin{aligned} & \text { 0: Positive direction=CCW } \\ & \text { 1: Positive direction=CW } \end{aligned}$	1	C
$\begin{gathered} 451 \\ (01 C 3 h) \end{gathered}$	$\begin{gathered} 4547 \\ (11 \mathrm{C} 3 \mathrm{~h}) \end{gathered}$	Software overtravel	0: Disable 1: Enable	1	A
$\begin{gathered} 452 \\ (01 C 4 h) \end{gathered}$	$\begin{gathered} 4548 \\ (11 \mathrm{C} 4 \mathrm{~h}) \end{gathered}$	Positive software limit	-8,388,608 to 8,388,607 step	8,388,607	A
$\begin{gathered} 453 \\ (01 C 5 h) \end{gathered}$	$\begin{gathered} 4549 \\ (11 \mathrm{C} 5 \mathrm{~h}) \end{gathered}$	Negative software limit	-8,388,608 to 8,388,607 step	-8,388,608	A
$\begin{gathered} 454 \\ (01 C 6 h) \end{gathered}$	$\begin{gathered} \hline 4550 \\ (11 C 6 h) \end{gathered}$	Preset position	-8,388,608 to 8,388,607 step	0	A
$\begin{gathered} 455 \\ (01 C 7 h) \end{gathered}$	$\begin{aligned} & 4551 \\ & (11 \mathrm{C} 7 \mathrm{~h}) \end{aligned}$	Wrap setting	0: Disable 1: Enable	0	C
$\begin{gathered} 456 \\ (01 \mathrm{C} 8 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 4552 \\ (11 \mathrm{C} 8 \mathrm{~h}) \end{gathered}$	Wrap setting range	1 to 8,388,607 step	1,000	C

Common parameter

Command code		Description	Setting range	Initial value	Update
READ	WRITE				
$\begin{gathered} 480 \\ \text { (01EOh) } \end{gathered}$	$\begin{gathered} 4576 \\ (11 \text { EOh }) \end{gathered}$	Data setter speed display	0 : Signed 1: Absolute value	0	A
$\begin{gathered} 481 \\ \text { (01E1h) } \end{gathered}$	$\begin{aligned} & 4577 \\ & (11 \mathrm{E} 1 \mathrm{~h}) \end{aligned}$	Data setter edit	0: Disable 1: Enable	1	A

I/O function [Input] parameter

Command code		Description	Setting range	Initial value	Update
READ	WRITE				
$\begin{gathered} 2176 \\ (0880 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 6272 \\ (1880 \mathrm{~h}) \end{gathered}$	INO input function selection	Refer to the following table.	3: HOME	C
$\begin{gathered} 2177 \\ (0881 \mathrm{~h}) \end{gathered}$	$\begin{aligned} & 6273 \\ & (1881 \mathrm{~h}) \end{aligned}$	IN1 input function selection		4: START	
$\begin{gathered} 2178 \\ (0882 h) \end{gathered}$	$\begin{gathered} 6274 \\ (1882 \mathrm{~h}) \end{gathered}$	IN2 input function selection		48: M0	
$\begin{gathered} 2179 \\ (0883 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 6275 \\ (1883 \mathrm{~h}) \end{gathered}$	IN3 input function selection		49: M1	
$\begin{gathered} 2180 \\ (0884 \mathrm{~h}) \end{gathered}$	$\begin{gathered} \hline 6276 \\ (1884 \mathrm{~h}) \end{gathered}$	IN4 input function selection		50: M2	
$\begin{gathered} \hline 2181 \\ (0885 \mathrm{~h}) \end{gathered}$	$\begin{gathered} \hline 6277 \\ (1885 \mathrm{~h}) \end{gathered}$	IN5 input function selection		16: FREE	
$\begin{gathered} \hline 2182 \\ (0886 \mathrm{~h}) \end{gathered}$	$\begin{gathered} \hline 6278 \\ (1886 \mathrm{~h}) \end{gathered}$	IN6 input function selection		18: STOP	
$\begin{gathered} 2183 \\ (0887 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 6279 \\ (1887 \mathrm{~h}) \end{gathered}$	IN7 input function selection		24: ALM-RST	
$\begin{gathered} \hline 2192 \\ (0890 \mathrm{~h}) \end{gathered}$	$\begin{gathered} \hline 6288 \\ (1890 \mathrm{~h}) \end{gathered}$	INO input logic level setting	0: Make (N.O) 1: Brake (N.C.)	0	C
$\begin{gathered} 2193 \\ (0891 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 6289 \\ (1891 \mathrm{~h}) \end{gathered}$	IN1 input logic level setting			
$\begin{gathered} 2194 \\ (0892 h) \end{gathered}$	$\begin{gathered} 6290 \\ (1892 \mathrm{~h}) \end{gathered}$	IN2 input logic level setting			
$\begin{aligned} & 2195 \\ & (0893 \mathrm{~h}) \end{aligned}$	$\begin{aligned} & 6291 \\ & \text { (1893h) } \end{aligned}$	IN3 input logic level setting			
$\begin{gathered} 2196 \\ (0894 \mathrm{~h}) \\ \hline \end{gathered}$	$\begin{gathered} \hline 6292 \\ (1894 \mathrm{~h}) \\ \hline \end{gathered}$	IN4 input logic level setting			
$\begin{gathered} 2197 \\ (0895 \mathrm{~h}) \end{gathered}$	$\begin{gathered} \hline 6293 \\ (1895 \mathrm{~h}) \end{gathered}$	IN5 input logic level setting			
$\begin{gathered} 2198 \\ (0896 \mathrm{~h}) \end{gathered}$	$\begin{gathered} \hline 6294 \\ (1896 \mathrm{~h}) \end{gathered}$	IN6 input logic level setting			
$\begin{gathered} 2199 \\ (0897 \mathrm{~h}) \end{gathered}$	$\begin{aligned} & 6295 \\ & (1897 \mathrm{~h}) \end{aligned}$	IN7 input logic level setting			

Setting range for IN input function selection

0: No function	8: MS0	18: STOP	35: R3	43: R11	51: M3
1: FWD	9: MS1	24: ALM-RST	36: R4	44: R12	52: M4
2: RVS	10: MS2	25: P-PRESET	37: R5	45: R13	53: M5
3: HOME	11: MS3	26: P-CLR*	38: R6	46: R14	
4: START	12: MS4	27: HMI	39: R7	47: R15	
5: SSTART	13: MS5	32: R0	40: R8	48: M0	
6: +JOG	16: FREE	33: R1	41: R9	49: M1	
7: -JOG	17: C-ON	34: R2	42: R10	50: M2	

[^20]I/O function [Output] parameter

Command code		Description	Setting range	Initial value	Update
READ	WRITE				
$\begin{gathered} 2208 \\ (08 A O h) \end{gathered}$	$\begin{gathered} 6304 \\ (18 \mathrm{AOh}) \end{gathered}$	OUTO output function selection	Refer to the following table.	70: HOME-P	C
$\begin{gathered} 2209 \\ (08 \mathrm{~A} 1 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 6305 \\ (18 \mathrm{~A} 1 \mathrm{~h}) \end{gathered}$	OUT1 output function selection		69: END	
$\begin{gathered} 2210 \\ (08 \mathrm{~A} 2 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 6306 \\ (18 A 2 h) \end{gathered}$	OUT2 output function selection		73: AREA1	
$\begin{gathered} 2211 \\ (08 A 3 h) \end{gathered}$	$\begin{gathered} 6307 \\ (18 A 3 h) \end{gathered}$	OUT3 output function selection		67: READY	
$\begin{gathered} 2212 \\ (08 \mathrm{~A} 4 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 6308 \\ (18 A 4 h) \end{gathered}$	OUT4 output function selection		66:WNG	
$\begin{gathered} 2213 \\ (08 A 5 h) \end{gathered}$	$\begin{gathered} 6309 \\ (18 \mathrm{~A} 5 \mathrm{~h}) \end{gathered}$	OUT5 output function selection		65: ALM	

Setting range for OUT output function selection

0: No function	10: MS2_R	35: R3	45: R13	61: -LS_R	72: TIM
1: FWD_R	11: MS3_R	36: R4	46: R14	62: HOMES_R	73: AREA1
2: RVS_R	12: MS4_R	37: R5	47: R15	63: SLIT_R	74: AREA2
3: HOME_R	13: MS5_R	38: R6	48: M0_R	65: ALM	75: AREA3
4: START_R	16: FREE_R	39: R7	49: M1_R	66: WNG	80: S-BSY
5: SSTART_R	17: C-ON_R	40: R8	50: M2_R	67: READY	82: MPS *
6: +JOG_R	18: STOP_R	41:R9	51: M3_R	68: MOVE	
7: -JOG_R	32: R0	42: R10	52: M4_R	69: END	
8: MSO_R	33: R1	43: R11	53: M5_R	70: HOME-P	
9: MS1_R	34: R2	44: R12	$60:+$ LS_R	71:TLC	

■ I/O function [RS-485] parameter

Command code		Description	Setting range	Initial value	Update
READ	WRITE				
$\begin{gathered} 2224 \\ (08 \mathrm{BOh}) \end{gathered}$	$\begin{gathered} 6320 \\ (18 B 0 h) \end{gathered}$	NET-IN0 input function selection	Refer to "Setting range for NET-IN input function selection" on p. 317 .	48: MO	C
$\begin{aligned} & 2225 \\ & (08 \mathrm{~B} 1 \mathrm{~h}) \end{aligned}$	$\begin{gathered} 6321 \\ (18 B 1 h) \end{gathered}$	NET-IN1 input function selection		49: M1	
$\begin{gathered} 2226 \\ (08 B 2 h) \end{gathered}$	$\begin{gathered} 6322 \\ (18 B 2 h) \end{gathered}$	NET-IN2 input function selection		50: M2	
$\begin{aligned} & 2227 \\ & (08 B 3 h) \end{aligned}$	$\begin{gathered} 6323 \\ (18 B 3 h) \end{gathered}$	NET-IN3 input function selection		4: START	
$\begin{gathered} 2228 \\ (08 B 4 h) \end{gathered}$	$\begin{gathered} 6324 \\ (18 B 4 h) \end{gathered}$	NET-IN4 input function selection		3: HOME	
$\begin{gathered} 2229 \\ (08 B 5 h) \end{gathered}$	$\begin{gathered} 6325 \\ (18 B 5 h) \end{gathered}$	NET-IN5 input function selection		18: STOP	
$\begin{gathered} 2230 \\ (08 B 6 h) \end{gathered}$	$\begin{gathered} 6326 \\ (18 B 6 h) \end{gathered}$	NET-IN6 input function selection		16: FREE	
$\begin{gathered} 2231 \\ (08 B 7 h) \end{gathered}$	$\begin{gathered} 6327 \\ (18 B 7 h) \end{gathered}$	NET-IN7 input function selection		0: No function	
$\begin{gathered} 2232 \\ (08 \mathrm{~B} 8 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 6328 \\ (18 B 8 h) \end{gathered}$	NET-IN8 input function selection		8: MS0	
$\begin{gathered} 2233 \\ (08 \mathrm{~B} 9 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 6329 \\ (18 B 9 h) \end{gathered}$	NET-IN9 input function selection		9: MS1	
$\begin{gathered} 2234 \\ \text { (08BAh) } \end{gathered}$	$\begin{gathered} 6330 \\ (18 \mathrm{BAh}) \\ \hline \end{gathered}$	NET-IN10 input function selection		10: MS2	

Command code		Description	Setting range	Initial value	Update
READ	WRITE				
$\begin{gathered} 2235 \\ \text { (08BBh) } \end{gathered}$	$\begin{aligned} & 6331 \\ & (18 \mathrm{BBh}) \end{aligned}$	NET-IN11 input function selection	Refer to the following table.	5: SSTART	C
$\begin{gathered} 2236 \\ (08 \mathrm{BCh}) \end{gathered}$	$\begin{aligned} & 6332 \\ & (18 \mathrm{BCh}) \end{aligned}$	NET-IN12 input function selection		6: +JOG	
$\begin{gathered} 2237 \\ \text { (08BDh) } \end{gathered}$	$\begin{gathered} 6333 \\ \text { (18BDh) } \end{gathered}$	NET-IN13 input function selection		7:-JOG	
$\begin{gathered} 2238 \\ \text { (O8BEh) } \end{gathered}$	$\begin{gathered} \hline 6334 \\ (18 \mathrm{BEh}) \end{gathered}$	NET-IN14 input function selection		1: FWD	
$\begin{gathered} 2239 \\ \text { (08BFh) } \end{gathered}$	$\begin{gathered} 6335 \\ (18 \mathrm{BFh}) \end{gathered}$	NET-IN15 input function selection		2: RVS	
$\begin{gathered} 2240 \\ (08 \mathrm{COh}) \end{gathered}$	$\begin{gathered} 6336 \\ (18 \mathrm{COh}) \end{gathered}$	NET-OUTO output function selection	Refer to "Setting range for NET-OUT output function selection" on p. 318 .	48: MO_R	C
$\begin{gathered} 2241 \\ (08 \mathrm{C} 1 \mathrm{~h}) \end{gathered}$	$\begin{aligned} & 6337 \\ & (18 \mathrm{C} 1 \mathrm{~h}) \end{aligned}$	NET-OUT1 output function selection		49: M1_R	
$\begin{gathered} 2242 \\ (08 C 2 h) \end{gathered}$	$\begin{gathered} 6338 \\ (18 \mathrm{C} 2 \mathrm{~h}) \end{gathered}$	NET-OUT2 output function selection		50: M2_R	
$\begin{gathered} 2243 \\ (08 \mathrm{C} 3 \mathrm{~h}) \end{gathered}$	$\begin{aligned} & 6339 \\ & (18 \mathrm{C} 3 \mathrm{~h}) \end{aligned}$	NET-OUT3 output function selection		4: START_R	
$\begin{gathered} 2244 \\ (08 \mathrm{C} 4 \mathrm{~h}) \end{gathered}$	$\begin{aligned} & 6340 \\ & (18 \mathrm{C} 4 \mathrm{~h}) \end{aligned}$	NET-OUT4 output function selection		70: HOME-P	
$\begin{gathered} 2245 \\ (08 C 5 h) \end{gathered}$	$\begin{gathered} 6341 \\ (18 \mathrm{C} 5 \mathrm{~h}) \end{gathered}$	NET-OUT5 output function selection		67: READY	
$\begin{gathered} 2246 \\ (08 C 6 h) \\ \hline \end{gathered}$	$\begin{gathered} 6342 \\ (18 \mathrm{C} 6 \mathrm{~h}) \end{gathered}$	NET-OUT6 output function selection		66: WNG	
$\begin{gathered} 2247 \\ (08 \mathrm{C} 7 \mathrm{~h}) \end{gathered}$	$\begin{aligned} & 6343 \\ & (18 \mathrm{C} 7 \mathrm{~h}) \end{aligned}$	NET-OUT7 output function selection		65: ALM	
$\begin{gathered} 2248 \\ (08 \mathrm{C} 8 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 6344 \\ (18 \mathrm{C} 8 \mathrm{~h}) \end{gathered}$	NET-OUT8 output function selection		80: S-BSY	
$\begin{gathered} 2249 \\ (08 C 9 h) \end{gathered}$	$\begin{aligned} & 6345 \\ & (18 \mathrm{C} 9 \mathrm{~h}) \end{aligned}$	NET-OUT9 output function selection		73: AREA1	
$\begin{gathered} 2250 \\ \text { (08CAh) } \\ \hline \end{gathered}$	$\begin{gathered} 6346 \\ (18 \mathrm{CAh}) \\ \hline \end{gathered}$	NET-OUT10 output function selection		74: AREA2	
$\begin{gathered} 2251 \\ (08 \mathrm{CBh}) \end{gathered}$	$\begin{gathered} 6347 \\ (18 C B h) \end{gathered}$	NET-OUT11 output function selection		75: AREA3	
$\begin{gathered} 2252 \\ \text { (08CCh) } \end{gathered}$	$\begin{aligned} & 6348 \\ & (18 \mathrm{CCh}) \end{aligned}$	NET-OUT12 output function selection		72: TIM	
$\begin{gathered} 2253 \\ \text { (08CDh) } \end{gathered}$	$\begin{gathered} 6349 \\ (18 C D h) \end{gathered}$	NET-OUT13 output function selection		68: MOVE	
$\begin{gathered} 2254 \\ \text { (O8CEh) } \end{gathered}$	$\begin{gathered} \hline 6350 \\ \text { (18CEh) } \end{gathered}$	NET-OUT14 output function selection		69: END	
$\begin{gathered} 2255 \\ \text { (08CFh) } \end{gathered}$	$\begin{gathered} 6351 \\ \text { (18CFh) } \end{gathered}$	NET-OUT15 output function selection		71:TLC	

- Setting range for NET-IN input function selection

0: No function	8: MSO	18: STOP	35: R3	43: R11	51: M3
1: FWD	9: MS1	24: ALM-RST	36: R4	44: R12	52: M4
2: RVS	10: MS2	25: P-PRESET	37: R5	45: R13	53: M5
3: HOME	11: MS3	26: P-CLR *	38: R6	46: R14	
4: START	12: MS4	27: HMI	39: R7	47: R15	
5: SSTART	13: MS5	32: R0	40: R8	48: M0	
6: +JOG	16: FREE	33: R1	41: R9	49: M1	
7: -JOG	17: C-ON	34: R2	42: R10	50: M2	

[^21]- Setting range for NET-OUT output function selection

0: No function	10: MS2_R	35: R3	45: R13	61: -LS_R	72: TIM
1: FWD_R	11: MS3_R	36: R4	46: R14	62: HOMES_R	73: AREA1
2: RVS_R	12: MS4_R	37: R5	47: R15	63: SLIT_R	74: AREA2
3: HOME_R	13: MS5_R	38: R6	48: M0_R	65: ALM	75: AREA3
4: START_R	16: FREE_R	39: R7	49: M1_R	66:WNG	80: S-BSY
5: SSTART_R	17: C-ON_R	40: R8	50: M2_R	67: READY	82: MPS *
6: +JOG_R	18: STOP_R	41: R9	51: M3_R	68: MOVE	
7: -JOG_R	32: R0	42: R10	52: M4_R	69: END	
8: MS0_R	33: R1	43: R11	53: M5_R	70: HOME-P	
9: MS1_R	34: R2	44: R12	60: +LS_R	71:TLC	

Communication parameter

Command code		Description		Setting range	Initial value
READ	WRITE		Update		
2304 $(0900 \mathrm{~h})$	6400 $(1900 \mathrm{~h})$	Communication timeout	$0:$ Not monitored 1 to $10,000 \mathrm{~ms}$	0	A
2305 $(0901 \mathrm{~h})$	6401 $(1901 \mathrm{~h})$	Communication error alarm	1 to 10 times	3	A

8 Appendix

- Table of contents

1 Timing charts...................................... 320
2 Specifications 331
3 General specifications 332
3-1 AC power input .. 332
3-2 DC power input... 333
4 Regulations and standards................ 334
4-1 UL Standards, CSA Standards.................. 334
4-2 CE Marking (AC power input type)......... 334
4-3 CE Marking (DC power input type) 335
4-4 Republic of Korea, Radio Waves Act....... 335

1 Timing charts

Power supply input (AC power input)

* When the C-ON input is not assigned or when the C-ON input is assigned as normally closed.

Power supply input (DC power input)

* When the C-ON input is not assigned or when the C-ON input is assigned as normally closed.

C-ON input

STOP input

- When the "STOP input action" parameter is "Immediate stop."

* The specific time varies depending on the load, operating speed, speed filter and other.
- When the "STOP input action" parameter is "Deceleration stop."

[^22]- When the "STOP input action" parameter is "Immediate stop \& Current OFF."

* The specific time varies depending on the load, operating speed, speed filter and other.
- When the "STOP input action" parameter is "Deceleration stop \& Current OFF."

* The specific time varies depending on the load, operating speed, speed filter and other.
- FREE input

ALM-RST input

- When an alarm generates and the motor maintains excitation

* ALM output is normally closed. It is ON during normal operation and it turns OFF when an alarm generates.
- When an alarm generates and the motor does not maintain excitation

* ALM output is normally closed. It is ON during normal operation and it turns OFF when an alarm generates.

■ HMI input

P-PRESET input

Single-motion operation (Positioning operation)

* The specific time varies depending on the load, operating speed, speed filter and other.

Linked-motion operation (Positioning operation)

* The specific time varies depending on the load, operating speed, speed filter and other.

Linked-motion 2 operation (Positioning operation)

[^23]*2 This is the value of the dwell time to be set in operation data No.1.

Push operation

- When the positioning operation is completed before turning to the "push-motion" status

* The specific time varies depending on the load, operating speed, speed filter and other.
- When the positioning operation is started from the "push-motion" status

Direct positioning operation

* The specific time varies depending on the load, operating speed, speed filter and other.

Sequential positioning operation

* The specific time varies depending on the load, operating speed, speed filter and other.

■ Continuous operation

[^24]- JOG operation

* The specific time varies depending on the load, operating speed, speed filter and other.

Return-to-home operation

Automatic return operation

- When the automatic return operation is performed using the main power supply (AC power input)

* The specific time varies depending on the load, operating speed, speed filter and other.
- When the automatic return operation is performed using the C-ON input

[^25]- Operation is terminated with the STOP input

* The specific time varies depending on the load, operating speed, speed filter and other.
- When the C-ON input is turned OFF while performing the automatic return operation

* The specific time varies depending on the load, operating speed, speed filter and other.

2 Specifications

Check on the Oriental Motor Website for the product specifications.

3 General specifications

3-1 AC power input

		Motor	Driver
Degree of protection		IP65 (Excluding the mounting surface and connectors.) IP20 (Double shaft type)	IP20
Operation environment	Ambient temperature	$-10 \text { to }+50^{\circ} \mathrm{C}\left(+14 \text { to }+122^{\circ} \mathrm{F}\right)^{*} 1$ (non-freezing) Harmonic geared type: 0 to $+40^{\circ} \mathrm{C}\left(+32\right.$ to $\left.+104{ }^{\circ} \mathrm{F}\right) * 1$ (non-freezing)	$\begin{aligned} & 0 \text { to }+55^{\circ} \mathrm{C}\left(+32 \text { to }+131^{\circ} \mathrm{F}\right) * 2 \\ & \text { (non-freezing) } \end{aligned}$
	Humidity	85% or less (non-condensing)	
	Altitude	Up to 1,000 m (3,300 ft.) above sea level	
	Surrounding atmosphere	No corrosive gas, dust, water, or oil	
Storage environment	Ambient temperature	-20 to $+60^{\circ} \mathrm{C}\left(-4\right.$ to $\left.+140^{\circ} \mathrm{F}\right)$ (non-freezing)	-25 to $+70^{\circ} \mathrm{C}\left(-13\right.$ to $\left.+158^{\circ} \mathrm{F}\right)$ (non-freezing)
	Humidity	85% or less (non-condensing)	
	Altitude	Up to 3,000 m ($10,000 \mathrm{ft}$.) above sea level	
	Surrounding atmosphere	No corrosive gas, dust, water, or oil	
Shipping environment	Ambient temperature	-20 to $+60^{\circ} \mathrm{C}\left(-4\right.$ to $\left.+140^{\circ} \mathrm{F}\right)$ (non-freezing)	-25 to $+70^{\circ} \mathrm{C}\left(-13\right.$ to $\left.+158^{\circ} \mathrm{F}\right)$ (non-freezing)
	Humidity	85% or less (non-condensing)	
	Altitude	Up to 3,000 m (10,000 ft.) above sea level	
	Surrounding atmosphere	No corrosive gas, dust, water, or oil	
Insulation resistance		$100 \mathrm{M} \Omega$ or more when 500 VDC megger is applied between the following places: - Case - Motor and sensor windings - Case - Electromagnetic brake windings	$100 \mathrm{M} \Omega$ or more when 500 VDC megger is applied between the following places: - Protective Earth Terminals - Power supply terminals - Signal I/O terminals - Power supply terminals
Dielectric strength		Sufficient to withstand the following places for 1 minute. - Case - Motor and sensor windings 1.5 kVAC $50 / 60 \mathrm{~Hz}$ - Case - Electromagnetic brake windings $1.5 \mathrm{kVAC} 50 / 60 \mathrm{~Hz}$	Sufficient to withstand the following for 1 minute. - Protective Earth Terminals - Power supply terminals $1.5 \mathrm{kVAC} 50 / 60 \mathrm{~Hz}$ - Signal I/O terminals - Power supply terminals $1.8 \mathrm{kVAC} 50 / 60 \mathrm{~Hz}$

*1 When installing a motor to a heat sink of a capacity at least equivalent to an aluminum plate [$250 \times 250 \mathrm{~mm}$ ($9.84 \times 9.84 \mathrm{in}$.), thickness 6 mm (0.24 in .)].
*2 When installing a driver to a heat sink of a capacity at least equivalent to an aluminum plate [200×200 mm ($7.87 \times 7.87 \mathrm{in}$.), thickness 2 mm (0.08 in .)].

3-2 DC power input

		Motor	Driver
Degree of protection		IP65 (Excluding the mounting surface and connectors.) IP20 (Double shaft type, models that the "motor identification" in the product model name is "S")	IP20
Operation environment	Ambient temperature	$-10 \text { to }+50^{\circ} \mathrm{C}\left(+14 \text { to }+122^{\circ} \mathrm{F}\right)^{*} 1$ (non-freezing) Harmonic geared type: 0 to $+40^{\circ} \mathrm{C}\left(+32 \text { to }+104^{\circ} \mathrm{F}\right)^{*} 1$ (non-freezing)	$0 \text { to }+50^{\circ} \mathrm{C}\left(+32 \text { to }+122^{\circ} \mathrm{F}\right)$ (non-freezing)
	Humidity	85 \% or less (non-condensing)	
	Altitude	Up to 1,000 m (3,300 ft.) above sea level	
	Surrounding atmosphere	No corrosive gas, dust, water, or oil	
Storage environment	Ambient temperature	$\begin{gathered} -20 \text { to }+60^{\circ} \mathrm{C}\left(-4 \text { to }+140^{\circ} \mathrm{F}\right) \\ \text { (non-freezing) } \end{gathered}$	$\begin{gathered} -25 \text { to }+70^{\circ} \mathrm{C}\left(-13 \text { to }+158^{\circ} \mathrm{F}\right) \\ \text { (non-freezing) } \end{gathered}$
	Humidity	85% or less (non-condensing)	
	Altitude	Up to 3,000 m (10,000 ft.) above sea level	
	Surrounding atmosphere	No corrosive gas, dust, water, or oil	
Shipping environment	Ambient temperature	$\begin{gathered} -20 \text { to }+60^{\circ} \mathrm{C}\left(-4 \text { to }+140^{\circ} \mathrm{F}\right) \\ \text { (non-freezing) } \end{gathered}$	$\begin{gathered} -25 \text { to }+70^{\circ} \mathrm{C}\left(-13 \text { to }+158^{\circ} \mathrm{F}\right) \\ \text { (non-freezing) } \end{gathered}$
	Humidity	85% or less (non-condensing)	
	Altitude	Up to 3,000 m (10,000 ft.) above sea level	
	Surrounding atmosphere	No corrosive gas, dust, water, or oil	
Insulation resistance		$100 \mathrm{M} \Omega$ or more when 500 VDC megger is applied between the following places: - Case - Motor and sensor windings - Case - Electromagnetic brake windings	$100 \mathrm{M} \Omega$ or more when 500 VDC megger is applied between the following places: - Frame Ground Terminal - Power supply terminals
Dielectric strength		Sufficient to withstand the following places for 1 minute: - Case - Motor and sensor windings 1.0 kVAC $50 / 60 \mathrm{~Hz}$ *2 - Case - Electromagnetic brake windings $1.0 \mathrm{kVAC} 50 / 60 \mathrm{~Hz}$ *2	Sufficient to withstand the following places for 1 minute: - Frame Ground Terminal - Power supply terminals 500 VAC $50 / 60 \mathrm{~Hz}$

*1 When installing a motor to a heat sink of a capacity at least equivalent to an aluminum plate $[100 \times 100 \mathrm{~mm}$ (3.94×3.94 in.), thickness $6 \mathrm{~mm}(0.24 \mathrm{in}$.)].
*2 0.5 kVAC for the ARM14, ARM15, ARM24, and ARM26

4 Regulations and standards

4-1 UL Standards, CSA Standards

This product is recognized by UL under UL and CSA Standards.
The driver is not provided with the electronic motor overload protection and the motor overtemperature protection specified in UL and CSA Standards.

4-2 CE Marking (AC power input type)

This product is affixed with the mark under the following directives.

Low Voltage Directive

Installation conditions

Item	Motor	Driver
Overvoltage category	II	II
Pollution degree	3 (2 for double shaft)	2
Degree of protection	IP65 (Excluding the mounting surface and connector part)	IP20
Protection against electric shock	Class I	Class I

- This product cannot be used in IT power distribution systems.
- Isolate the motor cable, the power supply cable and other drive cables from the signal cables by means of double insulation.
- The temperature of the driver's heat sink may exceed $90^{\circ} \mathrm{C}\left(194{ }^{\circ} \mathrm{F}\right)$ depending on the driving condition. Observe the followings.
- Be sure to perform test operation and check the driver temperature.
- Do not use the driver near combustibles.
- Do not touch the driver while operating.
- Use a circuit breaker conforming to EN or IEC Standards.
- The driver is not provided with the electronic motor overload protection and the motor overtemperature protection specified in EN Standards.
- The driver is not provided with the ground fault protection circuit. Wire the product in accordance with "Example of wiring to power supply considering ground fault protection." Also observe the followings.
- Earth leakage breaker: Rated sensitivity current 30 mA
- When connecting to a power supply of Overvoltage category III, use an insulation transformer to ground its secondary side (N for single-phase).
- Fault loop impedance: Equal to or less than the value in table

Power supply specifications of driver	Fault loop impedance
Single-phase 100-120 VAC	500Ω
Single-phase 200-240 VAC	$1,000 \Omega$

- Example of wiring to power supply considering ground fault protection
- TN power distribution systems

- TT power distribution systems

■ EMC Directive
Refer to "4-9 Conformity to the EMC Directive" on p. 44 for details about conformity.

- RoHS Directive

This product does not contain the substances exceeding the restriction values.

4-3 CE Marking (DC power input type)

This product is affixed with the mark under the following directives.

- EMC Directive

Refer to "4-8 Conformity to the EMC Directive" on p. 75 for details about conformity.
■ RoHS Directive
This product does not contain the substances exceeding the restriction values.

4-4 Republic of Korea, Radio Waves Act

This product is affixed with the KC Mark under the Radio Waves Act, the Republic of Korea.

- Unauthorized reproduction or copying of all or part of this Manual is prohibited.

If a new copy is required to replace an original manual that has been damaged or lost, please contact your nearest Oriental Motor sales office.

- Oriental Motor shall not be liable whatsoever for any problems relating to industrial property rights arising from use of any information, circuit, equipment or device provided or referenced in this manual.
- Characteristics, specifications, and dimensions are subject to change without notice.
- While we make every effort to offer accurate information in the manual, we welcome your input. Should you find unclear descriptions, errors or omissions, please contact your nearest Oriental Motor sales office.
- Orientalmotor, $\boldsymbol{\alpha}_{\text {STEP, }}$, and $\xlongequal{\text { GLEX }}$ are registered trademarks or trademarks of Oriental Motor Co., Ltd., in Japan and other countries.
Modbus is a registered trademark of Schneider Automation Inc.
CC-Link is a registered trademark of the CC-Link Partner Association.
EtherCAT ${ }^{\oplus}$ is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany. MECHATROLINK is a registered trademark of the MECHATROLINK Members Association.
Other product names and company names mentioned in this manual may be registered trademarks or trademarks of their respective companies and are hereby acknowledged. The third-party products mentioned in this manual are recommended products, and references to their names shall not be construed as any form of performance guarantee. Oriental Motor is not liable whatsoever for the performance of these third-party products.
© Copyright ORIENTAL MOTOR CO., LTD. 2024
- Please contact your nearest Oriental Motor office for further information.

ORIENTAL MOTOR U.S.A. CORP.
Technical Support Tel:800-468-3982
8:30am EST to 5:00pm PST (M-F)
ORIENTAL MOTOR (EUROPA) GmbH
Schiessstraße 44, 40549 Düsseldorf, Germany Technical Support Tel:00 800/22 556622

ORIENTAL MOTOR (UK) LTD.
Unit 5 Faraday Office Park, Rankine Road, Basingstoke, Hampshire RG24 8QB UK Tel:+44-1256347090

ORIENTAL MOTOR (FRANCE) SARL Tel:+33-1 47869750

ORIENTAL MOTOR ITALIA s.r.I.
Tel:+39-02-93906347

ORIENTAL MOTOR ASIA PACIFIC PTE. LTD. INA ORIENTAL MOTOR CO., LTD.

ORIENTAL MOTOR (MALAYSIA) SDN. BHD.
Tel:1800-806-161
ORIENTAL MOTOR (THAILAND) CO., LTD.
Tel:1800-888-881
ORIENTAL MOTOR (INDIA) PVT. LTD.
Tel:1800-120-1995 (For English)
1800-121-4149 (For Hindi)
TAIWAN ORIENTAL MOTOR CO., LTD.
Tel:0800-060708
SHANGHAI ORIENTAL MOTOR CO., LTD.
Tel:400-820-6516

Korea

Tel:080-777-2042
ORIENTAL MOTOR CO., LTD
4-8-1 Higashiueno, Taito-ku, Tokyo
110-8536 Japan
Tel:+81-3-6744-0361
www.orientalmotor.co.jp/ja

[^0]: * The model name is " 7 " for the gear ratio 7.2 of the PS geared type.

[^1]: * Use a power supply of $24 \mathrm{VDC} \pm 4 \%$ when extending the wiring distance between a product with an electromagnetic brake and a driver to 20 m (65.6 ft .) to 30 m (98.4 ft .).
 memo When turning on the 24 VDC power supply again, turn off the 24VDC power supply and wait for at least 1 second before doing so.

[^2]: * It cannot be used.

[^3]: * In direct I/O, turn the START input ON after setting the M0 to M5 inputs. In remote I/O, the operation will be performed even when turning the M0 to M5 inputs and the START input ON simultaneously.

[^4]: * In direct I/O, turn the START input ON after setting the M0 to M5 inputs. In remote I/O, the operation will be performed even when turning the M0 to M5 inputs and the START input ON simultaneously.

[^5]: * In direct I/O, turn the START input ON after setting the M0 to M5 inputs. In remote I/O, the operation will be performed even when turning the M0 to M5 inputs and the START input ON simultaneously.

[^6]: * In direct I/O, turn the START input ON after setting the M0 to M5 inputs. In remote I/O, the operation will be performed even when turning the M0 to M5 inputs and the START input ON simultaneously.

[^7]: * In direct I/O, turn the START input ON after setting the M0 to M5 inputs. In remote I/O, the operation will be performed even when turning the M0 to M5 inputs and the START input ON simultaneously.

[^8]: * In direct I/O, turn the START input ON after setting the M0 to M5 inputs. In remote I/O, the operation will be performed even when turning the M0 to M5 inputs and the START input ON simultaneously.

[^9]: * After pulling out of the limit sensor, the motor will move 200 steps.

[^10]: * In direct I/O, turn the FWD input or RVS input ON after setting the M0 to M5 inputs. In remote I/O, the operation will be performed even when turning the M0 to M5 inputs and the FWD (RVS) input ON simultaneously.

[^11]: - Number of drivers connected: 1 unit
 - Address number: 1
 - Transmission rate: 115,200 bps
 -Termination resistor: Enable

[^12]: * These cables are provided as our products. Purchase them separately.

[^13]: *1 Termination resistor 120Ω
 *2 Turn the termination resistor ON (TERM.-Nos. 1 and 2).

[^14]: * []: Initial value

[^15]:

[^16]: 6 Method of control via Modbus RTU (RS-485 communication)

[^17]:

[^18]: *1 These cables are provided as our products. Purchase them separately.
 *2 This cable is provided as our product. When the length of the motor cable is not enough, purchase it separately.
 *3 The termination resistor does not come with the product ($110 \Omega, 1 / 2 \mathrm{~W}$).

[^19]: - Number of drivers connected: 1
 - Address number: 0
 -Termination resistor: Enabled

[^20]: * It cannot be used.

[^21]: * It cannot be used.

[^22]: * The specific time varies depending on the load, operating speed, speed filter and other.

[^23]: *1 The specific time varies depending on the load, operating speed, speed filter and other.

[^24]: * The specific time varies depending on the load, operating speed, speed filter and other.

[^25]: * The specific time varies depending on the load, operating speed, speed filter and other.

