Orientalmotor

O/STEP

AZ Series / Motorized Actuator equipped with AZ Series

mini Driver
EtherNet/IP ${ }^{\text {TM }}$ Compatible
Parameter ID lists
USER MANUAL
Introduction

Hardware

Implicit communication

Troubleshooting

Reference materials
1 Introduction
1 Before using the product 6
2 Operating manuals 7
2-1 Related operating manuals 7
2-2 How to use operating manuals 7
3 Overview of the product 9
4 Safety precautions 10
5 Precautions for use 12
2 Hardware
1 System configuration 16
2 Preparation 17
2-1 Checking the product 17
2-2 How to identify the product model 17
2-3 Products possible to combine 17
2-4 Information about nameplate 18
2-5 Names and functions of parts 18
2-6 Indication of LEDs 19
3 Installation 21
3-1 Installation location 21
3-2 Installation method 21
4 Connection 23
4-1 Connection example 23
4-2 Connecting the main power supply and the control power supply (CN1). 24
4-3 Connecting the EtherNet/IP cable (CN3, CN4) 26
4-4 Connecting the USB cable 26
4-5 Connecting input signals (CN5). 26
4-6 Noise elimination measures. 27
4-7 Conformity to EMC Directive/Regulations 28
5 Setting of IP address 30
5-1 Setting method of IP address 30
5-2 When using the IP address setting switch 30
5-3 When setting with parameters 31
5-4 When setting with DHCP server 32
6 Inspection and maintenance 33
6-1 Inspection 33
6-2 Warranty 33
6-3 Disposal 33
7 Cable 34
7-1 Connection cables (For cable type). 34
7-2 Connection cables (For connector type) 37
7-3 Power supply cable 38
3 Implicit communication
1 Flow of Implicit communication 40
2 Guidance 41
3 Communication specifications 44
4 Implicit message. 45
4-1 Implicit message format 45
4-2 Input data 46
4-3 Output data 49
4-4 Processing order of Implicit communication 53
4-5 Data writing 54
4-6 Data reading 55
5 Example of execution for operation 57
5-1 Positioning operation 57
5-2 Continuous operation 58
6 Direct data operation 59
6-1 Overview of direct data operation 59
6-2 Output data and parameters required for direct data operation. 60
6-3 Operation example 63
4 Parameter ID lists
1 Timing for parameter to update 68
2 Maintenance commands 69
3 Monitor commands 70
4 Operation data R/W commands 76
4-1 Base address of each operation data number. 76
4-2 Parameter ID 78
4-3 Setting example 79
5 Operation I/O event R/W commands 80
5-1 Base address of operation I/O event 80
5-2 Parameter ID for operation I/O event R/W command. 80
6 Protect release commands 81
7 Extended operation data setting R/W command 82
8 Parameter R/W commands 83
8-1 Driver action simulation setting parameter 83
8-2 Base setting parameter 83
8-3 Coordinate parameters 84
8-4 Operation parameters. 84
8-5 Direct data operation parameters 84
8-6 ABZO sensor setting parameters 85
8-7 Mechanism settings parameters 85
8-8 Initial coordinate generation \& wrap coordinate parameters 85
8-9 JOG/HOME/ZHOME operation information setting parameters 86
8-10 Alarm setting parameters 87
8-11 Information setting parameters 87
8-12 I/O parameters 89
8-13 Direct I/O setting parameters 92
8-14 Remote I/O setting parameters 92
8-15 Virtual input parameters 93
8-16 User output setting parameters 94
8-17 Driver mode setting parameters 94
8-18 EtherNet/IP communication setting parameters 94
9 I/O signals assignment list 96
9-1 Input signals 96
9-2 Output signals 97
5 Troubleshooting
1 Detection of communication errors 100
1-1 Communication timeout 100
1-2 IP address conflict 100
2 Alarms 101
2-1 Alarm reset 101
2-2 Alarm history 101
2-3 Generation condition of alarms. 101
2-4 Alarm list 102
2-5 Timing chart 107
3 Information 109
3-1 Information history 112
3-2 Information list 112
4 Troubleshooting and remedial actions 115
6 Reference materials
1 Timing chart 118
2 Specifications 120
2-1 Product specifications 120
2-2 General specifications 120
3 Regulations and standards 121

1 Introduction

 operating manuals.

Table of contents

1 Before using the product 6
2 Operating manuals 7
2-1 Related operating manuals. 7
2-2 How to use operating manuals 7
3 Overview of the product 9
4 Safety precautions 10
5 Precautions for use 12

1 Before using the product

Only qualified personnel of electrical and mechanical engineering should work with the product.
Use the product correctly after thoroughly reading the section "4 Safety precautions" on p.10. In addition, be sure to observe the contents described in warning, caution, and note in this manual.
The product described in this document has been designed and manufactured to be incorporated in general industrial equipment. Do not use for any other purpose. Oriental Motor Co., Ltd. is not responsible for any compensation for damage caused through failure to observe this warning.

2 Operating manuals

2-1 Related operating manuals

For operating manuals, download from Oriental Motor Website Download Page or contact your nearest Oriental Motor sales office.

- AZ Series / Motorized Actuator equipped with AZ Series mini Driver EtherNet/IP Compatible USER MANUAL (this document)
- AZ Series / Motorized Actuator equipped with AZ Series OPERATING MANUAL Function Edition

Read the following operating manuals for motors and motorized actuators.

- OPERATING MANUAL Motor Edition
- OPERATING MANUAL Actuator Edition
- Motorized Actuator OPERATING MANUAL Function Setting Edition

2-2 How to use operating manuals

To use the product, read this manual together with the AZ Series OPERATING MANUAL Function Edition.
This manual describes contents specific to the mini Driver EtherNet/IP compatible, and the AZ Series OPERATING
MANUAL Function Edition describes contents common to the AZ Series products. Refer to the AZ Series OPERATING MANUAL Function Edition for the contents not included in this manual.
Reference destinations are indicated according to the flow of use.
How to read reference destinations
The title name of the operating manual is described in the reference destination.
memo The title number described in the reference destination may be changed. Use the title name when checking the reference destination.

Description of power supplies

This manual describes contents when a main power supply and a control power supply are used. The mini Driver can also be used with a main power supply only. When using it with only the main power supply, replace "main power supply and control power supply" or "control power supply" with "main power supply" to read this manual.

3 Overview of the product

The $\mathbf{A Z}$ Series mini Driver EtherNet/IP compatible is the dedicated driver for the $\mathbf{A Z}$ Series products.

Compact and light weight

Compact and lightweight are achieved, offering the dimensions of $69 \mathrm{~mm} \times 56 \mathrm{~mm} \times 30 \mathrm{~mm}$ ($2.72 \mathrm{in} . \times 2.2 \mathrm{in} . \times 1.18 \mathrm{in}$.) and the mass of $0.11 \mathrm{~kg}(0.24 \mathrm{lb}$.$) .$

Compatible with EtherNet/IP

Direct data operation can be started, and operation data and parameters can be set via Implicit communication (periodic communication) of EtherNet/IP.

Setting methods of operation data and parameters

Operation data and parameters can be set via EtherNet/IP or using the MEXEO2 software.
This manual describes how to set operation data and parameters via EtherNet/IP.

- Equipped with direct data operation function

Direct data operation is a function to start operation at the same time as rewriting of the data. It can be used when the setting of the operation data is changed frequently, such as changing the speed or travel amount according to a load.

- Providing the EDS File

The EDS file (Electronic Data Sheets file) is a file that describes the specific information of the EtherNet/IP compatible products. Importing the EDS file to the setting tool of the scanner can perform the settings of EtherNet/IP before the driver is delivered to you.
For details, contact your nearest Oriental Motor sales office.

4 Safety precautions

The precautions described below are intended to ensure the safe and correct use of the product, and to prevent the user and other personnel from exposure to the risk of injury. Use the product only after carefully reading and fully understanding these instructions.

Note	Handling the product without observing the instructions that accompany a "WARNING" symbol may result in serious injury or death.
The items under this heading contain important handling instructions that the user	
should observe to ensure safe use of the product.	
symbol may resulut in injury or property dame instructions that accompany a "CAUTION"	

General

- Do not use the product in explosive or corrosive environments, in the presence of flammable gases, in places subjected to splashing water, or near combustibles. Doing so may result in fire, electric shock, or injury.
- Assign qualified personnel to the task of installing, wiring, operating/controlling, inspecting and troubleshooting the product. Handling by unqualified personnel may result in fire, electric shock, injury, or damage to equipment.
- Do not transport, install, connect or inspect the product while the power is supplied. Doing so may result in electric shock.
- Do not touch the driver while the power is supplied. Doing so may result in fire or electric shock.
- When an alarm of the driver is generated (any of the driver's protective functions is triggered), remove the cause before resetting the alarm (protective function). Continuing the operation without removing the cause of the problem may cause malfunction of the motor and the driver, leading to injury or damage to equipment.

Installation

- Install the driver in an enclosure. Failure to do so may result in electric shock or injury.

Connection

- Observe the product specifications for the power supply voltage of the driver. Failure to do so may result in fire or electric shock.
- Connect the product securely according to the connection diagram. Failure to do so may result in fire or electric shock.
- Do not forcibly bend, pull, or pinch the connection cable. Doing so may result in fire or electric shock.

Operation

- Turn off the main power supply and the control power supply in the event of a power failure. Failure to do so may result in injury or damage to equipment.
- Do not remove the motor excitation during operation. Doing so may cause the motor to stop and lose the holding force, resulting in injury or damage to equipment.

Repair, disassembly, and modification

- Do not disassemble or modify the driver. Doing so may result in injury or damage to equipment.

\triangle CAUTION

General

- Do not use the driver beyond the specifications. Doing so may result in electric shock, injury, or damage to equipment.
- Keep your fingers and objects out of the openings in the driver. Failure to do so may result in fire, electrical shock, or injury.
- Do not touch the driver during operation or immediately after stopping. Doing so may result in a skin burn(s).
- Do not forcibly bend or pull the cable that is connected to the driver. Doing so may cause damage to the product.

Installation

- Keep the area around the driver free of combustible materials. Failure to do so may result in fire or a skin burn(s).
- Do not leave anything around the driver that would obstruct ventilation. Doing so may result in damage to equipment.

Operation

- Use a motor and a driver only in the specified combination. An incorrect combination may cause a fire.
- Take measures against static electricity when operating the switches of the driver. Failure to do so may result in the driver malfunction or damage to equipment.
- Provide an emergency-stop device or emergency-stop circuit external to the equipment so that the entire equipment will operate safely in the event of a system failure or malfunction. Failure to do so may result in injury.
- When moving the moving part manually, put the motor into a non-excitation state. Continuing the work while the motor is in an excitation state may result in injury.
- For the main power supply and the control power supply, use a DC power supply with reinforced insulation on its primary and secondary sides. Failure to do so may result in electric shock.
- When an abnormal condition has occurred, immediately stop operation to turn off the main power supply and control power supply. Failure to do so may result in fire, electrical shock or injury.

5 Precautions for use

This chapter explains restrictions and requirements the user should consider when using the product.

- Always use Oriental Motor cables to connect a motor and a driver.

Refer to the cable models on p.34.

- When conducting the insulation resistance measurement or the dielectric strength test, be sure to separate the connection between the motor and the driver.
Conducting the insulation resistance measurement or the dielectric strength test with the motor and driver connected may result in damage to the product.
- Note when connecting a main power supply and a control power supply in a state of grounding the positive side
The USB connector on the driver is not electrically insulated. When grounding the positive terminals of a main power supply and a control power supply, do not connect any equipment (PC, etc.) whose negative terminal is grounded. Doing so may cause the driver and this equipment to short, damaging both. When connecting, do not ground equipment.

- Saving data to the non-volatile memory

Do not turn off the main power supply and control power supply while writing the data to the non-volatile memory, and also do not turn off for 5 seconds after the completion of writing the data. Doing so may abort writing the data and cause an alarm of EEPROM error to generate. The non-volatile memory can be rewritten approximately 100,000 times.

- Noise elimination measures

Refer to $p .27$ for noise elimination measures.

- Regeneration

When operating a large load inertia at a high speed, the regenerative energy generated may increase the voltage of the main power supply, causing an alarm of Overvoltage to generate. To prevent damage to the driver, reconsider the operating conditions so that regenerative voltage does not generate.

■ Notes when the connection cable is used

Note the following points when an Oriental Motor cable is used.

- When inserting the connector

Hold the connector main body, and insert it in straight securely. Inserting the connector in an inclined state may result in damage to terminals or a connection failure.

- When pulling out the connector

Pull out the connector in straight while releasing the lock part of the connector. Pulling out the connector with holding the cable may result in damage to the connector.

- Bending radius of cable
- Use the cable in a condition where the bending radius of the cable is as follows.
Cable type: More than 6 times the cable diameter
Connector type: More than 2.8 times the cable diameter
- Do not bend the lead wires part or secure with a clamp, etc. Doing so may result in damage to the connector.

- How to fix the cable

Fix the cable at two places near the connectors as shown in the figure or fix it with a wide clamp to take measures to prevent stress from being applied to the connectors.

2
 Hardware

This part explains names and functions of each part of the driver, installation and connection methods, and so on.

Table of contents

1 System configuration 16
2 Preparation 17
2-1 Checking the product 17
2-2 How to identify the product model 17
2-3 Products possible to combine 17
2-4 Information about nameplate 18
2-5 Names and functions of parts 18
2-6 Indication of LEDs 19
3 Installation 21
3-1 Installation location 21
3-2 Installation method 21
4 Connection 23
4-1 Connection example 23
4-2 Connecting the main power supply and the control power supply (CN1) 24
4-3 Connecting the EtherNet/IP cable (CN3, CN4) 26
4-4 Connecting the USB cable 26
4-5 Connecting input signals (CN5) 26
4-6 Noise elimination measures 27
4-7 Conformity to EMC Directive/Regulations 28
5 Setting of IP address 30
5-1 Setting method of IP address 30
5-2 When using the IP address setting switch 30
5-3 When setting with parameters 31
5-4 When setting with DHCP server 32
6 Inspection and maintenance 33
6-1 Inspection 33
6-2 Warranty 33
6-3 Disposal 33
7 Cable 34
7-1 Connection cables (For cable type). 34
7-2 Connection cables (For connector type) 37
7-3 Power supply cable 38

1 System configuration

*1 Connecting the control power supply allows you to continue monitoring even if the main power supply is shut off. Connect it as necessary.
*2 It is recommended that a circuit breaker or a circuit protector is connected because incorrect wiring of the power supply may cause the internal input circuit to short-circuit.
*3 Connect when using direct inputs or sensors.

2 Preparation

This chapter explains the items you should check, as well as names and functions of each part.

2-1 Checking the product

Verify that the items listed below are included. Report any missing or damaged items to the Oriental Motor sales office from which you purchased the product.

- Driver \qquad 1 unit
- Instructions and Precautions for Safe Use 1 copy

2-2 How to identify the product model

Check the driver model against the model shown on the nameplate. Refer to "2-4 Information about nameplate" on p. 18 for how to identify the nameplate.

$\frac{\text { AZD }}{1}-\frac{\mathrm{K}}{2} \frac{\mathrm{R}}{3} \frac{\mathrm{EP}}{4}$

1	Series	AZD: AZ Series driver
2	Power supply input	K: DC power input
3	Driver figure	R: Compact
4	Type	EP: EtherNet/IP

2-3 Products possible to combine

Products with which the driver can be combined are listed below. Check the model name of the product with the nameplate.

Power supply type	Product type	Applicable Series	Model name representing Series name *	Example of model name
DC power input	Stepping Motor	AZ Series	AZM	AZM46AK
	Motorized actuator	EAC Series *2	EACM	EACM2E05AZAK
		EAS Series *2	EASM	EASM4NXD005AZAK
		EZS Series *2	EZSM	EZSM6D005AZAK
		DR Series	DR	DR28G2.5B03-AZAKU
		DRS2 Series	DRSM	DRSM60-05A4AZAK
		DGII Series *2	$\begin{aligned} & \hline \text { DGM } \\ & \text { DGB } \end{aligned}$	$\begin{aligned} & \hline \text { DGM85R-AZAK } \\ & \text { DGB85R12-AZAKR } \end{aligned}$
		EH Series *2	EH	EH4-AZAKH
		L Series *2	LM	LM4F150AZAK-1

*1 The driver described in this manual can be combined with products that begin with these model names.
*2 For these motorized actuators, the equipped motors have been evaluated to affix the CE Marking. The model name of the equipped motor can be checked as follows..
EAC Series, EAS Series, EZS Series: Check with the motor nameplate.
DGII Series, EH Series, L Series: Check with "P/N (Motor P/N)" described on the actuator nameplate.

2-4 Information about nameplate

The figure shows an example.

2-5 Names and functions of parts

Type	Name	Sign	Description
LED	PWR/ALM LED (Green/Red/ Blue)	PWR/ALM	This LED indicates the status of the driver.
	MS LED (Green/Red)	MS	This LED indicates the status of the driver.
	NS LED (Green/Red)	NS	This LED indicates the communication status of EtherNet/IP.
	L/A LED (Green)	L/A	This LED indicates the LINK/ACT status of EtherNet/IP.
Switch	IP address setting switch	IP ADDR $\times 1$	Sets the IP address. Factory setting: 0 ($\times 1$: 0)
Connector	Power supply connector (CN1)	+, -	Connects a main power supply and a control power supply.
	Motor/encoder/ electromagnetic brake connector (CN2)	-	Connects the motor, the encoder, and the electromagnetic brake.
	USB connector	$\stackrel{\longrightarrow}{\longrightarrow}$	Connects a PC in which the MEXEO2 software has been installed. (USB2.0 mini-B port)
	EtherNet/IP connectors (CN3, CN4)	-	Connects the EtherNet/IP cable.
	Input signals connector (CN5)	-	Connects when using direct inputs or sensors.

2-6 Indication of LEDs

PWR/ALM LED

This LED indicates the status of the driver.

LED status	Description
No light	The main power supply and the control power supply are not turned on.
Green light	The main power supply and/or the control power supply are turned on.
Blinking red	An alarm is being generated. The alarm message generated can be checked by counting the number of times the LED blinks. The LED is lit in green when the alarm is reset.
Blinking blue	- Information is being generated. The LED is lit in green when the information is cleared. - Remote operation is being executed with the MEXE02 software. The LED is lit in green when remote operation is completed.
Repeating "Green \rightarrow Red \rightarrow Simultaneously lit * \rightarrow No light"	This is the driver simulation mode.

* Green and red colors may overlap and it may be visible to orange.

■ MS LED
This LED indicates the status of the driver.

LED status		
Green	Red	
No light	No light	The main power supply and the control power supply of the driver are not turned on.
Blinking	No light	The communication setting of EtherNet/IP is invalid.
Light	No light	The driver operates properly.
No light	Blinking	\bullet •An alarm that can be reset with EtherNet/IP or the MEXEO2 software was generated. •The setting of an IP address is duplicated in the same system.
No light		Light
Blinking alternately		Self-diagnosis when turning on the power is executing.

The blinking state of the LED is as follows.

Blinking

- NS LED

This LED indicates the communication status of EtherNet/IP.

LED status		Description
Green	Red	
No light	No light	\bullet \bullet \bullet \bullet This is in an offline state.
Blinking	No light	This is in an online state. Connection has not been established with the scanner.
Light	No light	This is in an online state. Connection is being established with the scanner.
No light	Blinking	Connection timed out with the scanner.
No light	Light	The setting of an IP address is duplicated in the same system.
Blinking alternately	Self-diagnosis when turning on the power is executing.	

The blinking state of the LED is as follows.

■ L/A LED
This LED indicates the LINK/ACT status of EtherNet/IP.

LED status	Description
No light	\bullet This is in an offline state. •The frame of EtherNet/IP is not sent and received.
Blinking	\bullet This is in an online state. - The frame of EtherNet/IP is sent and received.
Light	- This is in an online state. - The frame of EtherNet/IP is not sent and received.

3 Installation

This chapter explains the installation location and installation method of the driver.

3-1 Installation location

The driver is designed and manufactured to be incorporated in equipment. Install it in a well-ventilated location that provides easy access for inspection. The location must also satisfy the following conditions:

- Inside an enclosure that is installed indoors (provide vent holes)
- Operating ambient temperature: 0 to $+50^{\circ} \mathrm{C}\left[+32\right.$ to $\left.122^{\circ} \mathrm{F}\right]$ (non-freezing)
- Operating ambient humidity: 85% or less (non-condensing)
- Area free of explosive atmosphere, toxic gas (such as sulfuric gas), or liquid
- Area not exposed to direct sun
- Area free of excessive amount of dust, iron particles or the like
- Area not subject to splashing water (rain, water droplets), oil (oil droplets) or other liquids
- Area free of excessive salt
- Area not subject to continuous vibration or excessive shocks
- Area free of excessive electromagnetic noise (from welders, power machinery, etc.)
- Area free of radioactive materials, magnetic fields or vacuum
- Up to $1,000 \mathrm{~m}(3,300 \mathrm{ft}$.) above sea level

3-2 Installation method

The driver can be installed in any direction.
Install the driver onto a flat metal plate offering high heat conductivity [material: aluminum, $150 \times 150 \times 2 \mathrm{~mm}$ ($5.91 \times 5.91 \times 0.08$ in.) or equivalent].
When installing the driver, use the mounting holes and the cutouts for mounting to secure on the metal plate with two screws (M3: not included).

Note

- Install the driver in an enclosure.
- Do not install any equipment that generates a large amount of heat or noise near the driver.
- Do not install the driver underneath a scanner or equipment vulnerable to heat.
- If the ambient temperature of the driver exceeds $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$, reconsider the ventilation conditions such as providing forced cooling by using fans.

■ Dimensions [Unit: mm (in.)]
Mass: 0.11 kg (0.24 lb .)

4 Connection

This chapter explains a connection example of a driver and a motor, connection methods of a main power supply and a control power supply, and so on.
It also explains installation and wiring methods to conform to the EMC Directive/Regulations as well as measures against electrical noise.
\triangle WARNING
For protection against electric shock, do not turn on the main power supply and the control power supply until the wiring is completed.

4-1 Connection example

The figure shows an example when the AZM14 motor is connected.

*1 It is an Oriental motor cable. Purchase is required separately.
*2 Connecting the control power supply allows you to continue monitoring even if the main power supply is shut off. Connect it as necessary.
*3 It is recommended that a circuit breaker or a circuit protector is connected because incorrect wiring may cause the internal input circuit to short-circuit.

Note - Connect the connectors securely. Insecure connections may cause malfunction or damage to the motor or the driver.

- When connecting the cables, secure them so that no load is applied to the connectors. Applying a load to the connector may result in a connection failure, causing the driver to malfunction.
- Keep 10 m (32.8 ft .) or less for the wiring distance between a motor and a driver. Exceeding 10 m (32.8 ft .) in the wiring distance may result in increase of the electrical noise emitted from the driver.
- Keep 2 m (6.6 ft .) or less for the cable length of the main power supply and control power supply cables.
- Before connecting or disconnecting a connector, turn off the main power supply and the control power supply, and check the PWR/ALM LED has been turned off.
- When disconnecting the connector, pull out while pressing the latches on the connector with fingers.

4-2 Connecting the main power supply and the control power supply (CN1)

Connect a main power supply to the CN1 connector.
Connecting the control power supply allows you to continue monitoring even if the main power supply is shut off. Connect it as necessary.

Note Make sure the polarity of the power supply before connecting. Reverse-polarity connection may cause damage to the driver.

Applicable connector

Type	Part number	Applicable lead wire
Connector housing	1-1827864-2 (TE Connectivity)	AWG22 (0.34 to $0.37 \mathrm{~mm}^{2}$) AWG20 (0.51 to $0.53 \mathrm{~mm}^{2}$)
Contact	1827589-2 (TE Connectivity)	AWG18 (0.85 to $0.87 \mathrm{~mm}^{2}$) Lead wire insulation outer diameter: $\varnothing 1.4$ to 2.2 mm ($\varnothing 0.055$ to 0.087 in .)
Designated crimp tool	2119142-1 (TE Connectivity)	Lead wire insulation strip length: 1.7 to 2.3 mm (0.067 to 0.091 in .)

Pin assignment

The figure shows the view from the insertion side of contacts.

Pin No.	Name	Description
A1	GND	Ground for control power supply
A2	GND	Ground for main power supply
B1	Control power supply	$+24 \mathrm{VDC} /+48 \mathrm{VDC}$
B2	Main power supply	$+24 \mathrm{VDC} /+48 \mathrm{VDC}$

memo A1 and A2 are not electrically insulated.

Voltage specifications

The voltage specifications of power supply input include the rated voltage and the allowable operating voltage. The voltage specifications are common for the main power supply and the control power supply.

Rated voltage	$24 \mathrm{VDC} \pm 5 \%$ $48 \mathrm{VDC} \pm 5 \%$
Allowable operating voltage	24 VDC input: 20 to $32 \mathrm{VDC} \mathrm{(22.8} \mathrm{to} 32 \mathrm{VDC}$) * 48 VDC input: 40 to 55 VDC

* The value in parentheses () is the one when the electromagnetic brake motor is connected.
memo Set the "Main power mode" parameter to " $0: 24 \mathrm{VDC}$ " or " $1: 48 \mathrm{VDC}$ " when the main power supply starts up slowly or the voltage of the main power supply is unstable. ($\Rightarrow \mathrm{p} .83$)

- Internal input circuit

The driver can be used with the main power supply and control power supply, or with the main power supply only. When using only the main power supply, the power is supplied from the main power supply to the control power supply circuit inside the driver.

- Power supply current capacity

- Current capacity for main power supply

The current capacity for the main power supply varies depending on the product combined.
Check the current capacity in reference to the equipped motor model when using the EAC Series, EAS Series, or EZS Series.

Series	Model	Rated voltage	Power supply current capacity
AZ Series EAC Series EAS Series EZS Series	AZM14	$24 \mathrm{VDC} \pm 5$ \%	0.4 A or more
	AZM15		0.5 A or more
	AZM24, AZM26		1.4 A or more
	AZM46	$\begin{aligned} & 24 \mathrm{VDC} \pm 5 \% \\ & 48 \mathrm{VDC} \pm 5 \% \end{aligned}$	1.6 A or more
	AZM48		2.1 A or more
	AZM66		3.7 A or more
	AZM69		3.5 A or more
DGII Series	DGM60	$24 \mathrm{VDC} \pm 5$ \%	1.4 A or more
	DGB85	$\begin{aligned} & 24 \mathrm{VDC} \pm 5 \% \\ & 48 \mathrm{VDC} \pm 5 \% \end{aligned}$	1.6 A or more
	DGB130		3.7 A or more
	DGM85		1.6 A or more
	DGM130		3.7 A or more
DR Series	DR20	$24 \mathrm{VDC} \pm 5$ \%	0.4 A or more
	DR28		1.3 A or more
DRS2 Series	DRSM42	$\begin{aligned} & 24 \mathrm{VDC} \pm 5 \% \\ & 48 \mathrm{VDC} \pm 5 \% \end{aligned}$	1.5 A or more
	DRSM60		2.6 A or more
EH Series	EH3	$24 \mathrm{VDC} \pm 5$ \%	0.4 A or more
	EH4		1.4 A or more
L Series	LM2, LM4	$\begin{aligned} & 24 \mathrm{VDC} \pm 5 \% \\ & 48 \mathrm{VDC} \pm 5 \% \end{aligned}$	3.7 A or more

- Current capacity for control power supply

Rated voltage	Power supply current capacity	
	Without electromagnetic brake	With electromagnetic brake
$24 \mathrm{VDC} \pm 5 \%$	0.15 A	$0.4 \mathrm{~A} 30^{*}$
$48 \mathrm{VDC} \pm 5 \%$		

[^0]
4-3 Connecting the EtherNet/IP cable (CN3, CN4)

Connect the EtherNet/IP cable to the EtherNet/IP connector (CN3, CN4).
■ Pin assignment

Signal name	Description
TXP	Transmitted data +
TXN	Transmitted data -
RXP	Received data +
N.C.	-
N.C.	-
RXN	Received data -
N.C.	-
N.C.	-

4-4 Connecting the USB cable

Using a USB cable of the following specifications, connect a PC in which the MEXEO2 software has been installed to the USB connector.

Specifications	USB2.0 (full speed)
Cable	Length: $3 \mathrm{~m}(9.8 \mathrm{ft}$.) or less Shape: A to mini B

memo - Connect the driver and a PC directly using a USB cable.

- In large electrically noisy environments, use the USB cable with a ferrite core or install a ferrite core to the USB cable.

4-5 Connecting input signals (CN5)

Connect when using direct inputs or sensors.
Applicable lead wire and terminal

Applicable lead wire	\bullet AWG26 to $20\left(0.14\right.$ to $\left.0.5 \mathrm{~mm}^{2}\right)$ \bullet Lead wire strip length: $6 \mathrm{~mm}(0.24 \mathrm{in})$.
Applicable ferrule terminal	Without sleeve: 0.25 to $0.5 \mathrm{~mm}^{2}$ With sleeve: 0.25 to $0.34 \mathrm{~mm}^{2}$

Pin assignment

Pin No.	Signal name	Description *
1	IN0+	Control input 0 (STOP)
2	IN0 -	
3	IN1+	Control input 1 (FREE)
4	IN1-	

* (): Initial value

Connection example with a current sink output circuit

* Values in parentheses () are initial values.

Connection example with a current source output circuit

* (): Initial value

4-6 Noise elimination measures

There are two types of electrical noises: One is a noise to invade into the driver from the outside and cause the driver malfunction, and the other is a noise to emit from the driver and cause peripheral equipment malfunction.
For the noise that is invaded from the outside, take measures to prevent the driver malfunction. It is needed to take adequate measures because signal lines are very likely to be affected by the noise.
For the noise that is emitted from the driver, take measures to suppress it.

Measures against electrical noise

There are the following three methods mainly to take measures against the electrical noise.

- Noise suppression
- When relays or electromagnetic switches are used, use noise filters or CR circuits to suppress surge generated by them.
- Use an Oriental Motor connection cable when extending the wiring distance between the motor and the driver. Refer to $p .34$ for the model name. This is effective in suppressing the electrical noise emitted from the motor.
- Cover the driver by a metal plate such as aluminum. This is effective in shielding the electrical noise emitted from the driver.

- Prevention of noise propagation

- Connect a noise filter on the input side of the DC power supply.
- Place the power lines, such as the motor and power supply cables, keeping a distance of 200 mm (7.87 in.) or more from the signal lines, and also do not bundle them or wire them in parallel. If a power cable and a signal cable have to cross, cross them at a right angle.
- Use shielded twisted pair cables for power lines and signal lines.
- Keep cables as short as possible without coiling and bundling extra lengths.
- Grounding multiple points will increase effect to block electrical noise because impedance on the grounding points is decreased. However, ground them so that a potential difference does not occur among the grounding points.
- To ground a shielded cable, use a metal cable clamp that can maintain contact with the entire circumference of the shielded cable, and ground as near the product as possible.

- Suppression of effect by noise propagation

- Loop the noise propagated cable around a ferrite core. Doing so will prevent the propagated noise invades into the driver or emits from the driver. The frequency band in which an effect by the ferrite core can be seen is generally 1 MHz or more. Check the frequency characteristics of the ferrite core used. When increasing the effect of noise attenuation by the ferrite core, loop the cable a lot.

4-7 Conformity to EMC Directive/Regulations

Effective measures must be taken against EMI that the motor and driver may give to adjacent control-system equipment, as well as EMS of the motor and driver itself, in order to prevent a serious functional impediment in the machinery. The use of the following installation and wiring methods will enable the motor and driver to be compliant with EMC Directive/Regulations.
Oriental Motor conducts EMC testing on its motors and drivers in accordance with "Example of installation and wiring" on p.29. The user is responsible for ensuring the machine's compliance with EMC, based on the installation and wiring explained below.

\triangle CAUTION

This equipment is not intended for use in residential environments nor for use on a low-voltage public network supplied in residential premises, and it may not provide adequate protection to radio reception interference in such environments.

- Connecting the main power supply and the control power supply

Use DC power supplies compliant with EMC Directive/Regulations for the main power supply and the control power supply. Use shielded cables to wire and ground as short as possible. Refer to "Prevention of noise propagation" for how to ground the shielded cable.

- Ferrite core

Install the following ferrite core (or equivalent) to the places shown in "Example of installation and wiring" on p.29. Part No.: ZCAT3035-1330 (TDK Corporation)

- Connecting the motor cable

Use an Oriental Motor connection cable when extending the wiring distance between the motor and the driver. Refer to p. 34 for the model name.

- Connecting the signal cable

Refer to "Prevention of noise propagation."

- How to ground
- Wires used to ground the motor must be as thick and short as possible so that no potential difference is generated between the grounding points.
- Choose a large, thick and uniformly conductive surface for the grounding point.
- Make sure to ground the Protective Earth Terminal of the motor.
- Example of installation and wiring

The figure shows an example when the cable type electromagnetic brake motor is used.

*1 The driver is grounded by making the heat sink contact directly with the grounded panel.
*2 An Oriental Motor cable is used.
Note

- The driver uses components that are sensitive to static electricity. Take measures against static electricity since static electricity may cause the driver to malfunction or suffer damage.
- When connecting the following products, cover the motor cable with a shielded braided sleeving. Use the cable clamps to ground both ends of the shielded braided sleeving.
- AZ Series: AZM14, AZM15, AZM24, AZM26
- EAC Series: EACM2
- EAS Series: EASM2
- DR Series: DR20, DR28
- DGII Series: DGM60
- EH Series: EH3, EH4

5 Setting of IP address

The IP address, subnet mask, and default gateway are configured respectively as follows.

5-1 Setting method of IP address

The following three methods can be used to set the IP address, subnet mask, and default gateway.

Setting method	Set item		Specific setting method		
	IP address setting switch	"Configuration Control" parameter	IP address	Subnet mask	Default gateway
IP address setting switch	1 to E	0^{*}	First octet to third octet: Parameter Forth octet: IP address setting switch	Parameter	Parameter
	F	0^{*}	192.168 .1 .1	255.255 .255 .0	0.0 .0 .0
Parameter	0	0	Parameter	Parameter	Parameter
DHCP server	0	2	DHCP server	DHCP server	DHCP server

* If the IP address setting switch is other than "0," the "Configuration Control" parameter is automatically set to "0: Parameter."

5-2 When using the IP address setting switch

- Setting of IP address

Set the first octet to third octet with the parameters. Set the forth octet with the IP address setting switch.

- First octet to third octet

Related parameters

Parameter name	Description	Setting range	Initial value
IP Address 1	Sets the first octet of the IP address.		192
IP Address 2	Sets the second octet of the IP address.	0 to 255	168
IP Address 3	Sets the third octet of the IP address.		1

- Fourth octet

Set the fourth octet of the IP address using the IP address setting switch (IP ADDR $\times 1$).
The setting range of the IP address setting switch is 1 to 14 (Eh).
The IP address setting switch is hexadecimal. Convert the IP address from decimal to hexadecimal to set.
Factory setting: 0 (Setting of parameter or DHCP server is enabled)
Setting example

Setting of switch	Value of IP address	Note
0	The setting of the parameter or DHCP server is enabled.	Whether either the parameter or the DHCP server is enabled can be checked with the "Configuration Control" parameter.
1	XXX.XXX.XXX.1	The fourth octet is set to "1."
E	XXX.XXX.XXX.14	The fourth octet is set to"14."
F	192.168 .1 .1	This value is applied regardless of the setting of the parameter or the DHCP server.

Note

- When setting the switch, turn on the main power supply and the control power supply again. The new setting is enabled when the main power supply and the control power supply are turned on again.
- When connecting two or more EtherNet/IP compatible products, set so that an IP address is not duplicated. If an IP address is duplicated, a communication error of the "IP address conflict" is detected.

Setting of subnet mask and default gateway
Set the subnet mask and default gateway with the parameters.
Related parameters

Parameter name	Description	Setting range	Initial value
Network Mask 1	Sets the first octet of the subnet mask.		255
Network Mask 2	Sets the second octet of the subnet mask.	0 to 255	255
Network Mask 3	Sets the third octet of the subnet mask.		255
Network Mask 4	Sets the fourth octet of the subnet mask.		0
Gateway Address 1	Sets the first octet of the default gateway.		0
Gateway Address 2	Sets the second octet of the default gateway.	0 to 255	0
Gateway Address 3	Sets the third octet of the default gateway.		0
Gateway Address 4	Sets the fourth octet of the default gateway.		0

memo When the switch is set to "F", the following values are applied regardless of the setting of the parameter or the DHCP server.

- Subnet mask: 255.255.255.0
- Default gateway: 0.0.0.0

5-3 When setting with parameters

Set the IP address setting switch of the driver to " 0 " and the "Configuration Control" parameter to " 0 : Parameter." The parameters and the DHCP server cannot be used in combination.

Related parameters

Parameter name	Description	Setting range	Initial value
Configuration Control	Sets how to obtain the IP address.	0 : Parameter 2: DHCP server	2
IP Address 1	Sets the first octet of the IP address.	0 to 255	192
IP Address 2	Sets the second octet of the IP address.		168
IP Address 3	Sets the third octet of the IP address.		1
IP Address 4	Sets the fourth of the IP address.		1
Network Mask 1	Sets the first octet of the subnet mask.	0 to 255	255
Network Mask 2	Sets the second octet of the subnet mask.		255
Network Mask 3	Sets the third octet of the subnet mask.		255
Network Mask 4	Sets the fourth octet of the subnet mask.		0
Gateway Address 1	Sets the first octet of the default gateway.	0 to 255	0
Gateway Address 2	Sets the second octet of the default gateway.		0
Gateway Address 3	Sets the third octet of the default gateway.		0
Gateway Address 4	Sets the fourth octet of the default gateway.		0

Note When connecting two or more EtherNet/IP compatible products, set so that an IP address is not duplicated. If an IP address is duplicated, a communication error of the "IP address conflict" is detected.

5-4 When setting with DHCP server

The IP address, subnet mask and default gateway are automatically assigned from the DHCP server. Set the IP address setting switch of the driver to "0" and the "Configuration Control" parameter to "2: DHCP server." The parameters and the DHCP server cannot be used in combination.
memo If the main power supply and the control power supply is shut off, the IP address obtained from the DHCP server is cleared.

Related parameter

Parameter name	Description	Setting range	Initial value
Configuration Control	Sets how to obtain the IP address.	0: Parameter 2: DHCP server	2

6 Inspection and maintenance

6-1 Inspection

It is recommended that periodic inspections are conducted for the items listed below after each operation of the motor. If any failure is found, discontinue any use and contact your nearest office.

■ Inspection item

- Check if the openings in the driver are clogged.
- Check if the installation place of the driver is loose.
- Check if any of the connection parts of the driver is loose.
- Check if dust is deposited on the driver.
- Check if the driver has unusual smells or appearance defects.

Note The driver uses semiconductor components. Static electricity may damage the semiconductor components of the driver, so be extremely careful when handling them.

Check on the Oriental Motor Website for the product warranty.

6-3 Disposal

Dispose the product correctly in accordance with laws and regulations, or instructions of local governments.

7 Cable

7-1 Connection cables (For cable type)

Connection cables/Flexible connection cables

(For AZM14, AZM15, AZM24, AZM26)
These cables are used when connecting a motor and a driver.

memo
When installing the motor on a moving part, use a flexible cable.

- Connection cables For motor/encoder

Model	Length $[\mathrm{m}(\mathrm{ft})]$.
CCM005Z2AAF	$0.5(1.6)$
CCM010Z2AAF	$1(3.3)$
CCM030Z2AAF	$3(9.8)$
CCM050Z2AAF	$5(16.4)$
CCM100Z2AAF	$10(32.8)$

- Flexible connection cables For motor/encoder

Model	Length $[\mathrm{m}(\mathrm{ft})]$.
CCM005Z2AAR	$0.5(1.6)$
CCM010Z2AAR	$1(3.3)$
CCM030Z2AAR	$3(9.8)$
CCM050Z2AAR	$5(16.4)$
CCM100Z2AAR	$10(32.8)$

Connection cables/Flexible connection cables

(For AZM46, AZM48, AZM66, AZM69)
These cables are used when connecting a motor and a driver.
The figure shows an example when the electromagnetic brake motor is used.

memo When installing the motor on a moving part, use a flexible cable.

- Connection cables

For motor/encoder

Model	Length $[\mathrm{m}(\mathrm{ft})]$.
CCM005Z2ABF	$0.5(1.6)$
CCM010Z2ABF	$1(3.3)$
CCM030Z2ABF	$3(9.8)$
CCM050Z2ABF	$5(16.4)$
CCM100Z2ABF	$10(32.8)$

- Flexible connection cables

For motor/encoder

Model	Length $[\mathrm{m}(\mathrm{ft})]$.
CCM005Z2ABR	$0.5(1.6)$
CCM010Z2ABR	$1(3.3)$
CCM030Z2ABR	$3(9.8)$
CCM050Z2ABR	$5(16.4)$
CCM100Z2ABR	$10(32.8)$

For motor/encoder/electromagnetic brake

Model	Length $[\mathrm{m}(\mathrm{ft})]$.
CCM005Z2ACF	$0.5(1.6)$
CCM010Z2ACF	$1(3.3)$
CCM030Z2ACF	$3(9.8)$
CCM050Z2ACF	$5(16.4)$
CCM100Z2ACF	$10(32.8)$

For motor/encoder/electromagnetic brake

Model	Length $[\mathrm{m}(\mathrm{ft})]$.
CCM005Z2ACR	$0.5(1.6)$
CCM010Z2ACR	$1(3.3)$
CCM030Z2ACR	$3(9.8)$
CCM050Z2ACR	$5(16.4)$
CCM100Z2ACR	$10(32.8)$

■ Extension cables/Flexible extension cables

These cables are used when extending a connection cable (add between the driver and connection cable).
Use if the length of the connection cable used is not enough when extending the distance between a motor and a driver.
The extension cables and the flexible extension cables are common to all motors.
The figure shows an example when the AZM14 motor is connected.

memo - When installing the motor on a moving part, use a flexible cable.

- When extending the wiring length by connecting an extension cable to the connection cable, make the total cable length 10 m (32.8 ft .) or less.
- Extension cables

Model	Length $[\mathrm{m}(\mathrm{ft})]$.
CCM010Z2ADFT	$1(3.3)$
CCM030Z2ADFT	$3(9.8)$
CCM050Z2ADFT	$5(16.4)$

- Flexible extension cables

Model	Length $[\mathrm{m}(\mathrm{ft})]$.
CCM010Z2ADRT	$1(3.3)$
CCM030Z2ADRT	$3(9.8)$
CCM050Z2ADRT	$5(16.4)$

7-2 Connection cables (For connector type)

Connection cables/Flexible connection cables

These cables are used when connecting a motor and a driver.

The model name of the connection cable varies depending on the outlet direction from the motor. Refer to the figures below.

Cable outlet direction Output shaft direction

Cable outlet direction Vertical direction

Cable outlet direction Opposite to output shaft direction
memo When installing the motor on a moving part, use a flexible cable.

- Connection cables

Length [m (ft.)]	Cable outlet direction		
	Output shaft direction	Vertical direction	Opposite to output shaft direction
$0.2(0.7)$	CCM002Z1EFF	CCM002Z1EVF	CCM002Z1EBF
$0.5(1.6)$	CCM005Z1EFF	CCM005Z1EVF	CCM005Z1EBF
$1(3.3)$	CCM010Z1EFF	CCM010Z1EVF	CCM010Z1EBF
$2(6.6)$	CCM020Z1EFF	CCM020Z1EVF	CCM020Z1EBF
$3(9.8)$	CCM030Z1EFF	CCM030Z1EVF	CCM030Z1EBF
$5(16.4)$	CCM050Z1EFF	CCM050Z1EVF	CCM050Z1EBF
$7(23.0)$	CCM070Z1EFF	CCM070Z1EVF	CCM070Z1EBF
$10(32.8)$	CCM100Z1EFF	CCM100Z1EVF	CCM100Z1EBF

- Flexible connection cables

Length [m (ft.)]	Output shaft direction	Vertical direction	Opposite to output shaft direction
	CCM005Z1EFR	CCM005Z1EVR	CCM005Z1EBR
$1(3.3)$	CCM010Z1EFR	CCM010Z1EVR	CCM010Z1EBR
$2(6.6)$	CCM020Z1EFR	CCM020Z1EVR	CCM020Z1EBR
$3(9.8)$	CCM030Z1EFR	CCM030Z1EVR	CCM030Z1EBR
$5(16.4)$	CCM050Z1EFR	CCM050Z1EVR	CCM050Z1EBR
$7(23.0)$	CCM070Z1EFR	CCM070Z1EVR	CCM070Z1EBR
$10(32.8)$	CCM100Z1EFR	CCM100Z1EVR	CCM100Z1EBR

Extension cables/Flexible extension cables

These cables are used when extending a connection cable (add between the driver and connection cable). Use if the length of the connection cable used is not enough when extending the distance between a motor and a driver.

* Use the connection cable used.
memo - When installing the motor on a moving part, use a flexible cable.
- When extending the wiring length by connecting an extension cable to the connection cable, make the total cable length 10 m (32.8 ft .) or less.
- Extension cables

Model	Length $[\mathrm{m}(\mathrm{ft})]$.
CCM010Z2ADFT	$1(3.3)$
CCM030Z2ADFT	$3(9.8)$
CCM050Z2ADFT	$5(16.4)$

- Flexible extension cables

Model	Length $[\mathrm{m}(\mathrm{ft})]$.
CCM010Z2ADRT	$1(3.3)$
CCM030Z2ADRT	$3(9.8)$
CCM050Z2ADRT	$5(16.4)$

7-3 Power supply cable

This cable is used when connecti ng a driver to power supplies.
Model: LCD06Z2AY [0.6 m (2 ft.)]

3 Implicit communication

This part explains how to control via Implicit communication.

- Table of contents

1 Flow of Implicit communication 40
2 Guidance 41
3 Communication specifications 44
4 Implicit message. 45
4-1 Implicit message format 45
4-2 Input data 46
4-3 Output data49
4-4 Processing order of Implicit communication 53
4-5 Data writing 54
4-6 Data reading 55
5 Example of execution for operation 57
5-1 Positioning operation 57
5-2 Continuous operation 58
6 Direct data operation 59
6-1 Overview of direct data operation 59
6-2 Output data and parameters required for direct data operation 60
6-3 Operation example 63

1 Flow of Implicit communication

The contents of \square are explained in this manual.

Refer to the AZ Series OPERATING MANUAL Function Edition for the contents of \qquad .

D is the title name described in the reference destination.
memo Be sure to turn off the main power supply and control power supply of the driver before setting the switch. Setting the switch while the main power supply and/or the control power supply are in an on-state will not enable the new setting.

Install and connect the motor and the driver.

2 Hardware

- Set the home.
- Set the coordinate and the resolution.

1 Before starting operation $1 \begin{aligned} & 1 \text { Aeration }\end{aligned}$

Select the operation method and set data.

3 Implicit communication

- Stored data (SD) operation + Sequence function
- Macro operation
- Return-to-home operation

Make settings concerning information and alarms.

5 Troubleshooting

2 Guidance

If you are new to this product, read this chapter to understand the operating methods along with the operation flow. This is an example how to set the operation data and start the motor using a scanner.

- Operating conditions

This operation is performed under the following conditions.

- Number of drivers connected: 1 unit
- IP address: 192.168.1.2

Note - Before operating the motor, check the condition of the surrounding area to ensure safety.

- Before starting based on the guidance, import the EDS file to the setting tool of the scanner and register the system configuration in advance. For details, contact your nearest Oriental Motor sales office.

*1 It is an Oriental motor cable. Purchase is required separately.
*2 Connecting the control power supply allows you to continue monitoring even if the main power supply is shut off. Connect it as necessary.
*3 It is recommended that a circuit breaker or a circuit protector is connected because incorrect wiring may cause the internal input circuit to short-circuit.

STEP 2 Make preparations for operation.

Refer to "Before starting operation" in the AZ Series OPERATING MANUAL Function Edition.

STEP $3 \quad$ Set an IP address.

Set an IP address using the IP address setting switch (IP ADDR \times 1) on the driver.

1. Set the IP address setting switch as shown below.

Setting: 2 (192.168.1.2)

2. Turn on the main power supply and the control power supply again.

Note Be sure to turn off the main power supply and control power supply of the driver before setting the switch. Setting the switch while the main power supply and/or the control power supply are in an on-state will not enable the new setting.

STEP $4 \quad$ The scanner starts the motor.

As an example, this section explains how to perform the following positioning operation.

- Setting example
- Operation data number: 1
- Position: 5,000 steps
- Other settings: Initial values
- Operation processing flow

Descriptions are given using the scanner as the subject.

1. Set the following operation data to turn the WR-REQ ON.

The operation data is set in the driver. When the setting is completed, the WR-END is turned ON.

Byte	Description	Setting value	Note
34,35	Write parameter ID	3105	Parameter ID of "Position" of operation data No.1
36 to 39	Write data	5,000	Position: 5,000 steps

2. Turn the WR-REQ OFF.

The WR-END is returned to OFF.
3. Check the READY has been turned ON.
4. Select the operation data No. 1 to turn the START ON.

Positioning operation is started.
5. Check the READY has been turned OFF, and turn the START OFF.

STEP $5 \quad$ Were you able to operate?

How did it go? Were you able to operate properly? If the motor does not operate, check the following points.

- Is the PWR/ALM LED blinking in red?

An alarm is being generated. Refer to p. 101 for details.

- Are the main power supply, control power supply, the motor, and the EtherNet/IP cable connected securely?
- Is the IP address set correctly?
- Is the NS LED lit in red or blinking in red?

A communication error is being detected. Refer to p. 100 for details.

3 Communication specifications

Communication standards		EtherNet/IP (conforms to CT18)
Vendor ID		187: Oriental Motor Company
Device type		43: Generic Device
Transmission rate		10/100 Mbps (autonegotiation)
Communication mode		Full duplex/Half duplex (autonegotiation)
Cable specifications		Shielded twisted pair (STP) cable straight-through/crossover cable, category 5 e or higher is recommended
Number of occupied bytes	Output (scanner \rightarrow driver)	40 bytes
	Input (driver \rightarrow scanner)	56 bytes
Implicit communication	Number of connections	2
	Connection type	Exclusive Owner, Input Only
	Communication cycle (RPI)	1 to $3,200 \mathrm{~ms}$
	Connection type (scanner \rightarrow driver)	Point-to-Point
	Connection type (driver \rightarrow scanner)	Point-to-Point, Multicast
	Data trigger	Cyclic
IP address setting method		IP address setting switch, parameter, DHCP
Network topology		Star, Linear bus, Ring (Device Level Ring)

4 Implicit message

4-1 Implicit message format

This section shows transfer contents of implicit message. The order of data is in little-endian format.

Byte	Input (driver \rightarrow scanner)	Output (scanner \rightarrow driver)
0,1	Remote I/O (R-OUT)	Remote I/O (R-IN)
2,3	Operation data number selection_R	Operation data number selection
4,5	Fixed I/O (OUT)	Fixed I/O (IN)
6,7	Present alarm	Direct data operation operation type
8,9	Feedback position (lower)	Direct data operation position (lower)
10, 11	Feedback position (upper)	Direct data operation position (upper)
12,13	Feedback speed [Hz] (lower)	Direct data operation operating speed (lower)
14, 15	Feedback speed [Hz] (upper)	Direct data operation operating speed (upper)
16,17	Command position (lower)	Direct data operation starting/changing rate (lower)
18, 19	Command position (upper)	Direct data operation starting/changing rate (upper)
20, 21	Torque monitor	Direct data operation stopping deceleration (lower)
22, 23	CST operating current	Direct data operation stopping deceleration (upper)
24, 25	Information (lower)	Direct data operation operating current
26, 27	Information (upper)	Direct data operation forwarding destination
28,29	Reserved	Reserved
30, 31	Read parameter ID_R	Read parameter ID
32,33	Read/write status	Write request
34, 35	Write parameter ID_R	Write parameter ID
36,37	Read data (lower)	Write data (lower)
38, 39	Read data (upper)	Write data (upper)
40,41	Assignable monitor 0 (lower)	-
42,43	Assignable monitor 0 (upper)	-
44,45	Assignable monitor 1 (lower)	-
46, 47	Assignable monitor 1 (upper)	-
48, 49	Assignable monitor 2 (lower)	-
50,51	Assignable monitor 2 (upper)	-
52,53	Assignable monitor 3 (lower)	-
54, 55	Assignable monitor 3 (upper)	-

Note For Implicit message, all data in the message format is periodically exchanged between the driver and the scanner. Therefore, check all data when setting it. If only some data is set, the data that is not set will be undefined, which may cause the driver to malfunction.

4-2 Input data

Data transferred from a driver to a scanner is called Input data.
■ Input data format
Contents of the Input data are as follows. The order of data is in little-endian format.

Assembly Instance	Attribute	Byte	Size (byte)	Description
100	3	0,1	2	Remote I/O (R-OUT)
		2, 3	2	Operation data number selection_R
		4,5	2	Fixed I/O (OUT)
		6,7	2	Present alarm
		8 to 11	4	Feedback position
		12 to 15	4	Feedback speed
		16 to 19	4	Command position
		20, 21	2	Torque monitor
		22, 23	2	CST operating current
		24 to 27	4	Information
		28,29	2	Reserved
		30, 31	2	Read parameter ID_R
		32,33	2	Read/write status
		34, 35	2	Write parameter ID_R
		36 to 39	4	Read data
		40 to 43	4	Assignable monitor 0
		44 to 47	4	Assignable monitor 1
		48 to 51	4	Assignable monitor 2
		52 to 55	4	Assignable monitor 3

- Details of Input data
- Remote I/O (R-OUT)

This is the I/O accessed via EtherNet/IP.
The assignments of signals can be changed using the "R-OUT output function" parameters.

Bit	Name	Description	Initial assignment
0	R-OUTO	Output in response to a signal assigned with the "R-OUT output function" parameter.	64: MO_R
1	R-OUT1		65: M1_R
2	R-OUT2		66: M2_R
3	R-OUT3		32: START_R
4	R-OUT4		144: HOME-END
5	R-OUT5		132: READY
6	R-OUT6		135: INFO
7	R-OUT7		129: ALM-A
8	R-OUT8		136: SYS-BSY
9	R-OUT9		160: AREAO
10	R-OUT10		161: AREA1
11	R-OUT11		162: AREA2
12	R-OUT12		157: TIM
13	R-OUT13		134: MOVE
14	R-OUT14		138: IN-POS
15	R-OUT15		140: TLC

- Operation data number selection_R

Bit	Name	Description
0	M0_R	Output in response to an input signal.
1	M1_R	
2	M2_R	
3	M3_R	
4	M4_R	
5	M5_R	
6	M6_R	
7	M7_R	
8 to 15	Reserved	0 is returned.

- Fixed I/O (OUT)

This is the I/O accessed via EtherNet/IP. Assignments of signals cannot be changed.

Bit	Name	Description
0	SEQ-BSY	Output while stored data operation is performed.
1	MOVE	Output while the motor operates.
2	IN-POS	Output when positioning operation is completed.
3	START_R	Output in response to an input signal.
4	HOME-END	Output when high-speed return-to-home operation or return-to-home operation is completed, or position preset is executed.
5	READY	Output when the driver is ready to operate.
6	DCMD-RDY	Output when the driver is ready to start direct data operation.
7	ALM-A	Output the alarm status of the driver. (Normally open)
8	TRIG_R	Output in response to an input signal.
9	TRIG-MODE_R	Output in response to an input signal.
10	SET-ERR	Output when an error occurs in any of the settings of the operation type, position, operating speed, starting/changing speed rate, stopping deceleration, operating current, or forwarding destination for direct data operation.
11	EXE-ERR	Output when direct data operation is failed to execute.
12	DCMD-FULL	Output when data is being written to the buffer area of direct data operation.
13	STOP_R	Output in response to an input signal.
14	Reserved	O is returned.
15	TLC	Output when the output torque reaches the upper limit value.

- Present alarm

Bit	Name	Description
0 to 15	Present alarm	This indicates the alarm code presently being generated.

- Feedback position

Bit	Name	Description
0 to 31	Feedback position	This indicates the present feedback position. (step) When the wrap function is enabled, the value on the wrap coordinates is indicated.

- Feedback speed

Bit	Name	
0 to 31	Feedback speed	This indicates the present feedback speed. (Hz)

- Command position

Bit	Name	Description
0 to 31	Command position	This indicates the present command position. (step) When the wrap function is enabled, the value on the wrap coordinates is indicated.

- Torque monitor

Bit	Name	Description
0 to 15	Torque monitor	This indicates the torque presently generated as a percentage of the maximum holding torque. $(1=0.1 \%)$

- CST operating current

Bit	Name	Description
0 to 15	CST operating current	This indicates the operating current of the a control (CST) mode. $(1=0.1 \%)$

- Information

Bit	Name	
0 to 31	Information	This indicates the information code presently being generated.

- Read parameter ID_R

Bit	Name	Description
0 to 15	Read parameter ID_R	This indicates a response of the read parameter ID.

- Read/write status

Bit	Name	Description
0 to 6	Reserved	0 is returned.
7	RD-ERR	Output when an error occurred in reading. If reading is performed properly, the RD-REQ is turned OFF
8	WR-END	Output in response to the WR-REQ. The WR-END is also turned ON while the WR-REQ is ON. OFF: Write request waiting ON: Write completed
9	SYS-BSY	Output when the driver is in an internal processing state.
10	Reserved	0 is returned.
11	WR-SET-ERR	Output when the write parameter ID or write data is out of the setting range.
12	WR-IF-ERR	Output when writing cannot be performed due to user I/F communication in progress.
14	WR-NV-ERR	Output when writing cannot be performed due to non-volatile memory processing in progress.
15	WR-EXE-ERR	Output when a command cannot be executed.
14	Output when an error occurred in writing. If the WR-REQ is turned OFF or writing is performed properly, the WR-ERR is also turned OFF.	

- Write parameter ID_R

Bit	Name	Description
0 to 15	Write parameter ID_R	This indicates a response of the write parameter ID .

- Read data

Bit	Name	Description
0 to 31	Read data	This indicates the value of the parameter shown in the parameter ID_R.

- Assignable monitor

Bit	Name	Description
0 to 31	Assignable monitor $n *$	This indicates the value of the parameter set in the "Assignable monitor address n" parameter.

* n : 0 to 3

4-3 Output data

Data transferred from a scanner to a driver is called Output data.

Output data format

Contents of the Output data are as follows. The order of data is in little-endian format.

Assembly Instance	Attribute	Byte	Size (byte)	Description
101	3	0,1	2	Remote I/O (R-IN)
		2,3	2	Operation data number selection
		4,5	2	Fixed I/O (IN)
		6,7	2	Direct data operation operation type
		8 to 11	4	Direct data operation position
		12 to 15	4	Direct data operation operating speed
		16 to 19	4	Direct data operation starting/changing rate
		20 to 23	4	Direct data operation stopping deceleration
		24, 25	2	Direct data operation operating current
		26, 27	2	Direct data operation forwarding destination
		28,29	2	Reserved
		30, 31	2	Read parameter ID
		32,33	2	Write request
		34, 35	2	Write parameter ID
		36 to 39	4	Write data

Details of Output data

- Remote I/O (R-IN)

This is the I/O accessed via EtherNet/IP.
The assignments of signals can be changed using the "R-IN input function" parameters.

Bit	Name	Description	Initial assignment
0	R-INO	These are used to execute the signal assigned with the "R-IN input function" parameter.	0 : Not used
1	R-IN1		
2	R-IN2		
3	R-IN3		
4	R-IN4		
5	R-IN5		
6	R-IN6		
7	R-IN7		
8	R-IN8		
9	R-IN9		
10	R-IN10		
11	R-IN11		
12	R-IN12		
13	R-IN13		
14	R-IN14		
15	R-IN15		

- Operation data number selection

Bit	Name		Description
0	M0		
1	M1		
2	M2		
3	M3		
4	M4		0
5	M5		
6	M6		
7	M7		
8 to 15	Reserved	A value is disregarded.	

- Fixed I/O (IN)

This is the I/O accessed via EtherNet/IP.
Assignments of signals cannot be changed.

Bit	Name	Description	Initial value
0	FW-JOG	This is used to execute JOG operation in the forward direction.	
1	RV-JOG	This is used to execute JOG operation in the reverse direction.	
2	Reserved	A value is disregarded.	
3	START	This is used to execute stored data operation.	
4	ZHOME	This is used to execute high-speed return-to-home operation.	
5	STOP	This is used to stop the motor.	
6	FREE	This is used to shut off the motor current to put the motor into a nonexcitation state. When an electromagnetic brake motor is used, the electromagnetic brake is in a state of releasing the motor shaft.	
7	ALM-RST	This is used to reset the alarm generated presently.	
8	TRIG	This is used to execute direct data operation.	
9	TRIG-MODE	This is used to set the judgment level for the TRIG. 0 : Start at ON edge 1: Start at ON level	
10	Reserved	A value is disregarded.	
11	Reserved	A value is disregarded.	
12	FW-JOG-P	This is used to execute inching operation in the forward direction.	
13	RV-JOG-P	This is used to execute inching operation in the reverse direction.	
14	FW-POS	This is used to execute continuous operation in the forward direction.	
15	RV-POS	This is used to execute continuous operation in the reverse direction.	

Direct data operation operation type

Bit	Name	Description	Initial value
0 to 15	Direct data operation operation type	This is used to set the operation type for direct data operation. [Setting range] 0 : No setting 1: Absolute positioning 2: Incremental positioning (based on command position) 3: Incremental positioning (based on feedback position) 7: Continuous operation (Position control) 8: Wrap absolute positioning 9: Wrap proximity positioning 10: Wrap forward direction absolute positioning 11: Wrap reverse direction absolute positioning 12: Wrap absolute push-motion 13: Wrap proximity push-motion 14: Wrap forward direction push-motion 15: Wrap reverse direction push-motion 16: Continuous operation (Speed control) 17: Continuous operation (Push-motion) 18: Continuous operation (Torque control) 20: Absolute positioning push-motion 21: Incremental positioning push-motion (based on command position) 22: Incremental positioning push-motion (based on feedback position)	2

- Direct data operation position

Bit	Name	Description	Initial value
to 31	Direct data operation position	This is used to set the target position for direct data operation. [Setting range] $-2,147,483,648$ to $2,147,483,647$ steps	0

- Direct data operation operating speed

Bit	Name	Description	Initial value
0 to 31	Direct data operation operating speed	This is used to set the operating speed for direct data operation. [Setting range] $-4,000,000$ to $4,000,000 ~ H z$	1,000

- Direct data operation starting/changing rate

Bit	Name	Description	Initial value
0 to 31	Dhis is used to set the starting/changing rate or the starting/ Dirarting/changing rate changing time for direct data operation. [Setting range $]$ 1 to $1,000,000,000$ $(1=0.001 \mathrm{kHz} / \mathrm{s}, 1=0.001 \mathrm{~s}$, or $1=0.001 \mathrm{~ms} / \mathrm{kHz})$	$1,000,000$	

- Direct data operation stopping deceleration

Bit	Name	Description	Initial value
0 to 31	Direct data operation stopping deceleration	This is used to set the stopping deceleration rate or the stop time for direct data operation. [Setting range] 1 to $1,000,000,000$ $(1=0.001 \mathrm{kHz} / \mathrm{s}, 1=0.001 \mathrm{~s}$, or $1=0.001 \mathrm{~ms} / \mathrm{kHz})$	

- Direct data operation operating current

Bit	Name	Description	Initial value
to 15	Direct data operation operating current	This is used to set the operating current for direct data operation. [Setting range] 0 to $1,000(1=0.1 \%)$	1,000

- Direct data operation forwarding destination

Bit	Name	Description	Initial value
0 to 15	Direct data operation forwarding destination	This is used to select the stored area when the next direct data is transferred during direct data operation. [Setting range] 0: Execution memory 1: Buffer memory	0

- Read parameter ID

Bit	Name	Description	Initial value
0 to 15	Read parameter ID	This is used to set the parameter ID to be read from.	0

- Write request

Bit	Name	Description	Initial value
0	WR-REQ	This is used to set the write request. [Setting range] $0:$ Disable $1:$ Write request (ON edge)	0
1 to 15	Reserved	A value is disregarded.	0

- Write parameter ID

Bit	Name	Description	Initial value
0 to 15	Write parameter ID	This is used to set the parameter ID to be written to.	0

- Write data

Bit	Name	Description	Initial value
0 to 31	Write data	This is used to set a value to be written to the parameter specified by the write parameter ID.	0

4-4 Processing order of Implicit communication

The processing order of Implicit communication is shown below.

memo

- If multiple operation commands are set in the Implicit message format, the operation command of direct data operation is prioritized.
- If the operation commands for remote $\mathrm{I} / \mathrm{O}(\mathrm{R}-\mathrm{IN})$ and fixed $\mathrm{I} / \mathrm{O}(\mathrm{IN})$ are set at the same time, operation will be as follows.
- If the same operation command is set:The motor will start.
- If different operation commands are set: The motor will not start, and information of Start operation error will be generated.

4-5 Data writing

This section explains the flow that data is written from the scanner to the driver via Implicit communication.

Area of Implicit message format used

Input (transfer from driver to scanner)

Byte	Description
32,33	Read/write status
34,35	Write parameter ID_R

Output (transfer from scanner to driver)

Byte	Description
32,33	Write request
34,35	Write parameter ID
36 to 39	Write data

Flow that data is written to

* If an error occurs while data is being written, the WR-END and WR-ERR are simultaneously turned ON.

4-6 Data reading

This section explains the flow that data is read from the driver to the scanner via Implicit communication. There are the following two methods to read data.

- Use an area of "Read data"
- Use an area of "Assignable monitor"

When an area of read data is used

- Area of Implicit message format used

Input (transfer from driver to scanner) Output (transfer from scanner to driver)

Byte	Description
30,31	Read parameter ID_R
32,33	Read/write status
36 to 39	Read data

Byte	Description
30,31	Read parameter ID

- Flow that data is read from

[^1]
When an area of assignable monitor is used

- Area of Implicit message format used

Input (transfer from driver to scanner)

Byte	Description
40 to 55	Assignable monitor 0 to assignable monitor 3

- Flow that data is read from

Scanner
Sets the "Assignable monitor address" parameter.\rightarrowDriver The value of the parameter set in the "Assignable monitor address" parameter is read every communication cycle.

* n: 0 to 3
- Related parameters

Parameter ID		Name	Description	Initial value
Dec	Hex			
25600	6400h	Assignable monitor address 0	Sets the parameter ID to show on the assignable monitor. [Setting range] Set from items of "3 Monitor commands" on p. 70	124: Driver temperature
25601	6401h	Assignable monitor address 1		125: Motor temperature
25602	6402h	Assignable monitor address 2		109: Cumulative load monitor
25603	6403h	Assignable monitor address 3		127:Tripmeter

5 Example of execution for operation

This chapter describes operations that operation data is set using the write data area.
The method to execute operation is common to fixed I/O and remote I/O.

5-1 Positioning operation

As an example, this section explains how to perform the following positioning operation.

- Setting example
- Operation data number: 1
- Position: 5,000 steps
- Other settings: Initial values

- Operation processing flow

Descriptions are given using the scanner as the subject.

1. Set the following operation data to turn the WR-REQ ON.

The operation data is set in the driver. When the setting is completed, the WR-END is turned ON.

- Output (scanner \rightarrow driver)

Byte	Description	Setting value	Note
34,35	Write parameter ID	3105	Parameter ID of "Position" of operation data No.1
36 to 39	Write data	5,000	Position: 5,000 steps

- Input (driver \rightarrow scanner)

Byte	Description	Response	Note
34,35	Write parameter ID_R	3105	Parameter ID of "Position" of operation data No. 1

2. Turn the WR-REQ OFF.

The WR-END is returned to OFF.
3. Check the READY has been turned ON.
4. Select the operation data No. 1 to turn the START ON.

Positioning operation is started.
5. Check the READY has been turned OFF, and turn the START OFF.

5-2 Continuous operation

As an example, this section explains how to perform the following continuous operation.

- Setting example
- Operation data number: 0
- Rotation direction: Forward direction
- Other settings: Initial values

- Operation processing flow

Descriptions are given using the scanner as the subject.

1. Check the READY has been turned ON.
2. Set the following operation data to turn the FW-POS ON.

Continuous operation is started.

- Output (scanner \rightarrow driver)

Byte	Description	Setting value	Note
2,3	Operation data number selection	0	The operation data No.0 is selected.

3. To stop continuous operation, turn the FW-POS OFF.

The motor decelerates to a stop.

6 Direct data operation

6-1 Overview of direct data operation

Direct data operation is a mode that allows start of operation at the same time as rewriting of data.
It is suitable to frequently change operation data such as the position (travel amount) or the operating speed, or to applications to adjust the position finely.
There are the following seven types of triggers to start operation at the same time as rewriting of data.

- One of the following items: Operation type, position, operating speed, starting/changing speed rate, stopping deceleration, and operating current
- The above six items are collectively rewritten

Direct data operation is executed with the TRIG of fixed I/O (IN).
A condition to execute direct data operation can be selected from the following two types using the TRIG-MODE of fixed I/O (IN).

- Start at ON edge of TRIG: The motor will start according to the operation data being set when the TRIG is turned ON.
- Start at ON level of TRIG: The motor will start at the same time when the data of the trigger set in the "Direct data operation trigger setting" parameter is changed.

Application example 1 of direct data operation

The position (travel amount) or the operating speed should be adjusted each time a load is changed because the feed rate is different in each load.

- Setting example
- Position (travel amount): Change as desired
- Operating speed: Change as desired
- TRIG-MODE: Start at ON edge of TRIG
- Operation processing flow

Descriptions are given using the scanner as the subject.

1. Write the position and the operating speed.
2. Turn the TRIG ON.

- Result

When the TRIG is turned ON, the changed value is updated immediately, and operation is performed with the new position and operating speed.

- Application example 2 of direct data operation

The operating speed should be changed immediately with the touch screen because a large load is inspected at a lower speed.

- Setting example
- Operating speed: Change as desired
- Trigger: Operating speed (setting value of trigger: -4)
- TRIG-MODE: Start at ON level of TRIG
- Operation processing flow

Descriptions are given using the scanner as the subject.

1. Write" " 4 " to the "Direct data operation trigger setting" parameter.
2. Write the data of the operating speed.
3. Turn the TRIG ON.
4. Change the operating speed.

- Result

When the TRIG is turned ON, operation is started. If the operating speed is changed, the changed value is updated immediately, and the operation is performed at the new operating speed.

Output data and parameters required for direct data operation

- Related Output data

Byte	Name	Description	Initial value
6,7	Direct data operation operation type	This is used to set the operation type for direct data operation. [Setting range] 0 : No setting 1: Absolute positioning 2: Incremental positioning (based on command position) 3: Incremental positioning (based on feedback position) 7: Continuous operation (Position control) 8: Wrap absolute positioning 9: Wrap proximity positioning 10: Wrap forward direction absolute positioning 11:Wrap reverse direction absolute positioning 12: Wrap absolute push-motion 13: Wrap proximity push-motion 14: Wrap forward direction push-motion 15: Wrap reverse direction push-motion 16: Continuous operation (Speed control) 17: Continuous operation (Push-motion) 18: Continuous operation (Torque control) 20: Absolute positioning push-motion 21: Incremental positioning push-motion (based on command position) 22: Incremental positioning push-motion (based on feedback position)	2
8 to 11	Direct data operation position	This is used to set the target position for direct data operation. [Setting range] $-2,147,483,648 \text { to } 2,147,483,647 \text { steps }$	0
12 to 15	Direct data operation operating speed	This is used to set the operating speed for direct data operation. [Setting range] $-4,000,000 \text { to } 4,000,000 \mathrm{~Hz}$	1,000

Byte	Name	Description	Initial value
16 to 19	Direct data operation starting/changing rate	This is used to set the acceleration/deceleration rate or the acceleration/deceleration time for direct data operation. [Setting range] 1 to $1,000,000,000$ $(1=0.001 \mathrm{kHz} / \mathrm{s}, 1=0.001 \mathrm{~s}$, or $1=0.001 \mathrm{~ms} / \mathrm{kHz})$	$1,000,000$
20 to 23	Direct data operation stopping deceleration	This is used to set the stopping deceleration rate or the stop time for direct data operation. [Setting range] 1 to $1,000,000,000$ $(1=0.001 \mathrm{kHz} / \mathrm{s}, 1=0.001 \mathrm{~s}$, or $1=0.001 \mathrm{~ms} / \mathrm{kHz})$	$1,000,000$
24,25	Direct data operation operating current	This is used to set the operating current for direct data operation. [Setting range] 0 to 1,000 (1=0.1 $\%)$	1,000
26,27	Direct data operation forwarding destination	This is used to select the stored area when the next direct data is transferred during direct data operation. [Setting range] $0:$ Execution memory $1:$ Buffer memory	0

- Related parameter

Parameter ID		Name	Description	Initial value
Dec	Hex		Sets the trigger to execute direct data operation. The trigger setting is enabled only when the TRIG-MODE is set to"1: Start at ON level." [Setting range] -6: Operation type -5: Position -4: Operating speed -3: Starting/changing speed rate -2: Stopping deceleration -1: Operating current 0: Disable 1: All data updated	
6114 h		Direct data operation trigger setting	1	

■ Trigger setting

This is a trigger to start operation at the same time as rewriting of data in direct data operation.
The trigger setting is enabled only when the TRIG-MODE is set to "1: Start at ON level."

- When the trigger setting is " 0 "

Direct data operation is disabled.

- When the trigger setting is " 1 "

When the TRIG is turned from OFF to ON, direct data operation is started. After that, if any of data is changed, the motor will be started. The motor will be started only when data is changed.

- When the trigger setting is " -1 to -6 "

When the TRIG is turned from OFF to ON, direct data operation is started. After that, only when the data corresponding to the trigger is changed, the motor will be started. Even if data other than the trigger is changed, the motor will not be started.

Data forwarding destination

During direct data operation, the stored area when the next direct data is transferred can be selected.

- When the forwarding destination is set to " 0 : Execution memory"

If the TRIG is turned from OFF to ON or the data corresponding to the trigger is changed, the data during operation can be rewritten to the next direct data.

- When the forwarding destination is set to " 1 : Buffer memory"

If the TRIG is turned from OFF to ON or the data corresponding to the trigger is changed, the next direct data is saved in the buffer memory. When the data during operation is completed, operation of the buffer memory is automatically started. One direct data can be stored in the buffer memory.
If the next direct data is written to the buffer memory, the DCMD-FULL output is turned ON.
During stop or continuous operation, if "Buffer memory" is specified, the data is not stored in the buffer memory and it is rewritten to the next direct data immediately.

memo The direct data cannot be written to the buffer memory while the DCMD-FULL output is being ON.

6-3 Operation example

A condition to execute direct data operation can be selected from the ON edge or ON level of TRIG of fixed I/O (IN). A condition can be selected with the TRIG-MODE of fixed I/O (IN).

Note
Before operating the motor, check the condition of the surrounding area to ensure safety.

When direct data operation is executed at ON edge of TRIG

As an example, this section explains how to perform the following direct data operation.

- Setting example
- Operation type: Incremental positioning (based on command position)
- Position: 5,000 steps
- Operating speed: $1,000 \mathrm{~Hz}$
- Starting/changing speed rate: $1,000 \mathrm{kHz} / \mathrm{s}$
- Stopping deceleration: $1,000 \mathrm{kHz} / \mathrm{s}$
- Operating current: 100%
- Forwarding destination: Execution memory
- Operation processing flow

Descriptions are given using the scanner as the subject.

1. Check the DCMD-RDY has been turned ON.
2. Set the following data.

- Output (scanner \rightarrow driver)

Byte	Description	Setting value	Note
4,5	TRIG-MODE [bit 9 of fixed I/O (IN)]	0	Start at ON edge
6,7	Direct data operation operation type	2	Incremental positioning (based on command position)
8 to 11	Direct data operation position	5,000	$5,000 \mathrm{steps}$
12 to 15	Direct data operation operating speed	1,000	$1,000 \mathrm{~Hz}$
16 to 19	Direct data operation starting/changing rate	$1,000,000$	$1,000 \mathrm{kHz} / \mathrm{s}$
20 to 23	Direct data operation stopping deceleration	$1,000,000$	$1,000 \mathrm{kHz} / \mathrm{s}$
24,25	Direct data operation operating current	1,000	100.0%
26,27	Direct data operation forwarding destination	0	Execution memory

3. Turn the TRIG ON.

Direct data operation is started.
4. Check the TRIG_R has been turned ON, and turn the TRIG OFF.

■ When direct data operation is executed at ON level of TRIG

This section explains how to execute the following direct data operation with setting the trigger to "position." Set the trigger with the "Direct data operation trigger setting" parameter.

- Setting example

- Operation 1

Position: 7,000 steps

- Operation 2

Position: 3,000 steps

- Other settings

Description	Setting value
Operation type	Incremental positioning (based on command position)
Operating speed	$1,000 \mathrm{~Hz}$
Starting/changing rate	$1,000 \mathrm{kHz} / \mathrm{s}$

Description	Setting value
Stopping deceleration	$1,000 \mathrm{kHz} / \mathrm{s}$
Operating current	100%
Forwarding destination	Execution memory

- Operation processing flow

Descriptions are given using the scanner as the subject.

1. Set the following parameters to turn the WR-REQ ON.

The parameter information is set to the driver. When the setting is completed, the WR-END is turned ON.

- Output (scanner \rightarrow driver)

Byte	Description	Setting value	Note
34,35	Write parameter ID	24852	Parameter ID of "Direct data operation trigger setting"
36 to 39	Write data	-5	Position

2. Turn the WR-REQ OFF.

The WR-END is returned to OFF.
3. Check the DCMD-RDY has been turned ON.
4. Set the following data.

- Output (scanner \rightarrow driver)

Byte	Description	Setting value	Note
4,5	TRIG-MODE [bit 9 of fixed I/O (IN)]	1	Start at ON level
6,7	Direct data operation operation type	2	Incremental positioning (based on command position)
8 to 11	Direct data operation position	7,000	$7,000 \mathrm{steps}$
12 to 15	Direct data operation operating speed	1,000	$1,000 \mathrm{~Hz}$
16 to 19	Direct data operation starting/changing rate	$1,000,000$	$1,000 \mathrm{kHz} / \mathrm{s}$
20 to 23	Direct data operation stopping deceleration	$1,000,000$	$1,000 \mathrm{kHz} / \mathrm{s}$
24,25	Direct data operation operating current	1,000	100%
26,27	Direct data operation forwarding destination	0	Execution memory

5. Turn the TRIG ON.

Direct data operation of the operation 1 is started.
6. Check the operation 1 is completed, and set the following data.

Direct data operation of the operation 2 is started.

- Output (scanner \rightarrow driver)

Byte	Description	Setting value	Note
8 to 11	Direct data operation position	3,000	3,000 steps

memo - To execute direct data operation of the operation 2 , set a different value from the operation 1 in the "position" of the operation 2.

- If a value other than the "position" is changed, direct data operation of the operation 2 will not be executed.

Parameter ID lists

> This part describes the parameter ID lists to be set via EtherNet/IP. Data and parameters described here can also be set using the MEXE02 software.

- Table of contents

1 Timing for parameter to update 68
2 Maintenance commands. 69
3 Monitor commands. 70
4 Operation data R/W commands 76
4-1 Base address of each operation data number. 76
4-2 Parameter ID 78
4-3 Setting example 79
5 Operation I/O event R/W commands 80
5-1 Base address of operation I/O event 80
5-2 Parameter ID for operation I/O event R/W command 80
6 Protect release commands 81
7 Extended operation data setting R/W command 82
8 Parameter R/W commands 83
8-1 Driver action simulation setting parameter 83
8-2 Base setting parameter 83
8-3 Coordinate parameters 84
8-4 Operation parameters 84
8-5 Direct data operation parameters 84
8-6 ABZO sensor setting parameters 85
8-7 Mechanism settings parameters. 85
8-8 Initial coordinate generation \& wrap coordinate parameters 85
8-9 JOG/HOME/ZHOME operation information setting parameters 86
8-10 Alarm setting parameters 87
8-11 Information setting parameters 87
8-12 I/O parameters 89
8-13 Direct I/O setting parameters 92
8-14 Remote I/O setting parameters 92
8-15 Virtual input parameters 93
8-16 User output setting parameters 94
8-17 Driver mode setting parameters. 94
8-18 EtherNet/IP communication setting parameters. 94
9 I/O signals assignment list. 96
9-1 Input signals 96
9-2 Output signals 97

1 Timing for parameter to update

All data used with the driver is 32 bits wide.
Parameters are saved in the RAM or non-volatile memory of the driver. Parameters stored in the RAM are erased once the main power supply and control power supply are shut off, however, those stored in non-volatile memory are retained even if these power supplies are shut off.
When the control power supply of the driver is turned on, the parameters stored in the non-volatile memory are transfered to the RAM, and recalculation and setup for the parameters are executed in the RAM.

Parameters having set via Implicit communication are saved in the RAM. To save the parameters stored in the RAM to the non-volatile memory, execute the "Write batch NV memory" of the maintenance command.
When a parameter is changed, the timing to update the new value varies depending on the parameter. Refer to "Notation rules" for details about the update timing.

Note Do not shut off the main power supply and the control power supply while writing the data to the non-volatile memory, and also do not shut off for five seconds after the completion of writing the data. Doing so may abort the data write and cause an alarm of EEPROM error (alarm code 41h) to generate.

- Parameters set via Implicit communication are saved in the RAM. For parameters that requires to turn on the main power supply and the control power supply again for updating, be sure to save them in the non-volatile memory before turning off the power supplies.
- The non-volatile memory can be rewritten approximately 100,000 times.
- Timing to update

In this part, each update timing is represented in an alphabet.

Notation	Update timing	Description
A	Immediately	Recalculation and setup are immediately executed when the parameter is written.
B	After operation stop	Recalculation and setup are executed when the operation is stopped.
C	After executing Configuration	Recalculation and setup are executed after Configuration is executed or the main power supply and control power supply are turned on again.
D	After turning on the main power supply and control power supply again	Recalculation and setup are executed after the main power supply and control power supply are turned on again.

- READ and WRITE

READ/WRITE may be represented as follows in this manual.

Notation	Description
R	READ
W	WRITE
R/W	READ/WRITE

2 Maintenance commands

Maintenance commands are used to execute the alarm reset, clear latch information, batch processing of the nonvolatile memory and others.
Refer to the $\mathbf{A Z}$ Series OPERATING MANUAL Function Edition for details about parameters. When checking the $\mathbf{A Z}$ Series OPERATING MANUAL Function Edition, use the parameter name instead of the parameter ID.

Note The maintenance commands include processing in which the memory is operated, such as batch processing of the non-volatile memory and P-PRESET. Exercise caution not to execute them unnecessarily in succession.

Parameter ID		Name		Setting range

Configuration

Configuration can be executed when all of the following conditions are satisfied.

- An alarm is not being generated.
- The motor is not operating.
- I/O test, teaching, remote operation, teaching, and downloading are not executed with the MEXE02.

The table below shows the driver status before and after Configuration is executed.

Item	Configuration is ready to execute	Configuration is being executed	After configuration is executed
PWR/ALM LED	Green light	Blinking blue	Based on the driver condition.
Electromagnetic brake	Hold/release	Hold	
Motor excitation	Excitation/non-excitation	Non-excitation	
Output signal	Enable	Disable	Enable
Input signal	Enable	Disable	Enable

memo The correct monitor value may not be returned even if monitoring is executed during configuration.

3 Monitor commands

Monitor commands are used to monitor the command position, command speed, alarm and information history and others. All commands are used for read (READ).
Refer to the AZ Series OPERATING MANUAL Function Edition for details about parameters. When checking the AZ
Series OPERATING MANUAL Function Edition, use the parameter name instead of the parameter ID.

Parameter ID		Name
Dec	Hex	
64	0040h	Present alarm
65	0041h	Alarm history 1
66	0042h	Alarm history 2
67	0043h	Alarm history 3
68	0044h	Alarm history 4
69	0045h	Alarm history 5
70	0046h	Alarm history 6
71	0047h	Alarm history 7
72	0048h	Alarm history 8
73	0049h	Alarm history 9
74	004Ah	Alarm history 10
97	0061h	Present selected data number
98	0062h	Present operation data number
99	0063h	Command position
100	0064h	Command speed ($\mathrm{r} / \mathrm{min}$)
101	0065h	Command speed (Hz)
102	0066h	Feedback position
103	0067h	Feedback speed (r/min)
104	0068h	Feedback speed (Hz)
105	0069h	Remaining dwell time
106	006Ah	Direct l/O
107	006Bh	Torque monitor (1=0.1 \%)
109	006Dh	Cumulative load monitor
111	006Fh	Target position
112	0070h	Next number
113	0071h	Loop origin number
114	0072h	Loop count
115	0073h	Event monitor command position (NEXT)
116	0074h	Event monitor feedback position (NEXT)
117	0075h	Event monitor command position (JUMPO - Low event)
118	0076h	Event monitor feedback position (JUMP0 - Low event)
119	0077h	Event monitor command position (JUMP1 - High event)
120	0078h	Event monitor feedback position (JUMP1 - High event)
121	0079h	Event monitor command position (Operation stop)
122	007Ah	Event monitor feedback position (Operation stop)
123	007Bh	Information
124	007Ch	Driver temperature ($1=0.1^{\circ} \mathrm{C}$)
125	007Dh	Motor temperature ($1=0.1^{\circ} \mathrm{C}$)
126	007Eh	Odometer ($1=0.1 \mathrm{kRev}$)
127	007Fh	Tripmeter ($1=0.1 \mathrm{kRev}$)

Parameter ID		Name
Dec	Hex	
128	0080h	Sequence history 1
129	0081h	Sequence history 2
130	0082h	Sequence history 3
131	0083h	Sequence history 4
132	0084h	Sequence history 5
133	0085h	Sequence history 6
134	0086h	Sequence history 7
135	0087h	Sequence history 8
136	0088h	Sequence history 9
137	0089h	Sequence history 10
138	008Ah	Sequence history 11
139	008Bh	Sequence history 12
140	008Ch	Sequence history 13
141	008Dh	Sequence history 14
142	008Eh	Sequence history 15
143	008Fh	Sequence history 16
144	0090h	Feedback position 32-bit counter
145	0091h	Command position 32-bit counter
146	0092h	CST operating current ($1=0.1$ \%)
147	0093h	Loop count buffer
160	00AOh	Main power supply count
161	00A1h	Main power supply time (min)
162	00A2h	Control power supply count *1
163	00A3h	Inverter voltage ($1=0.1 \mathrm{~V}$)
164	00A4h	Main power supply voltage ($1=0.1 \mathrm{~V}$)
167	00A7h	IP ADDR SW *2
169	00A9h	Elapsed time from BOOT (ms)
184	00B8h	I/O status 1
185	00B9h	I/O status 2
186	00BAh	I/O status 3
187	00BBh	I/O status 4
188	00BCh	I/O status 5
189	00BDh	I/O status 6
190	OOBEh	I/O status 7
191	00BFh	I/O status 8
1280	0500h	Alarm history details (Alarm code)
1281	0501h	Alarm history details (Sub code)
1282	0502h	Alarm history details (Driver temperature)
1283	0503h	Alarm history details (Motor temperature)
1284	0504h	Alarm history details (Inverter voltage)
1285	0505h	Alarm history details (Physical I/O input)
1286	0506h	Alarm history details (R-1/O output)
1287	0507h	Alarm history details (Operation information 0)
1288	0508h	Alarm history details (Operation information 1)
1289	0509h	Alarm history details (Feedback position)
1290	050Ah	Alarm history details (Elapsed time from Boot) [ms]
1291	050Bh	Alarm history details (Elapsed time from starting operation) [ms]

Parameter ID		Name
Dec	Hex	
1292	050Ch	Alarm history details (Main power supply time) [min]
1296	0510h	Information history 1
1297	0511h	Information history 2
1298	0512h	Information history 3
1299	0513h	Information history 4
1300	0514h	Information history 5
1301	0515h	Information history 6
1302	0516h	Information history 7
1303	0517h	Information history 8
1304	0518h	Information history 9
1305	0519h	Information history 10
1306	051Ah	Information history 11
1307	051Bh	Information history 12
1308	051Ch	Information history 13
1309	051Dh	Information history 14
1310	051Eh	Information history 15
1311	051Fh	Information history 16
1312	0520h	Information time history 1 (ms)
1313	0521h	Information time history 2 (ms)
1314	0522h	Information time history 3 (ms)
1315	0523h	Information time history 4 (ms)
1316	0524h	Information time history 5 (ms)
1317	0525h	Information time history 6 (ms)
1318	0526h	Information time history 7 (ms)
1319	0527h	Information time history 8 (ms)
1320	0528h	Information time history 9 (ms)
1321	0529h	Information time history 10 (ms)
1322	052Ah	Information time history 11 (ms)
1323	052Bh	Information time history 12 (ms)
1324	052Ch	Information time history 13 (ms)
1325	052Dh	Information time history 14 (ms)
1326	052Eh	Information time history 15 (ms)
1327	052Fh	Information time history 16 (ms)
1472	05COh	Latch monitor status (NEXT)
1473	05C1h	Latch monitor command position (NEXT)
1474	05C2h	Latch monitor feedback position (NEXT)
1475	05C3h	Latch monitor target position (NEXT)
1476	05C4h	Latch monitor operation number (NEXT)
1477	05C5h	Latch monitor number of loop (NEXT)
1480	05C8h	Latch monitor status (I/O event - Low event)
1481	05C9h	Latch monitor command position (I/O event - Low event)
1482	05CAh	Latch monitor feedback position (I/O event - Low event)
1483	05CBh	Latch monitor target position (I/O event - Low event)
1484	05CCh	Latch monitor operation number (I/O event - Low event)
1485	05CDh	Latch monitor number of loop (I/O event - Low event)
1488	05D0h	Latch monitor status (I/O event - High event)
1489	05D1h	Latch monitor command position (I/O event - High event)

Parameter ID		Name	
Dec	Hex		
1490	05D2h	Latch monitor feedback position (I/O event - High event)	
1491	05D3h	Latch monitor target position (I/O event - High event)	
1492	05D4h	Latch monitor operation number (I/O event - High event)	
1493	05D5h	Latch monitor number of loop (I/O event - High event)	
1496	05D8h	Latch monitor status (Operation stop)	
1497	05D9h	Latch monitor command position (Operation stop)	
1498	05DAh	Latch monitor feedback position (Operation stop)	
1499	05DBh	Latch monitor target position (Operation stop)	
1500	05DCh	Latch monitor operation number (Operation stop)	
1501	05DDh	Latch monitor number of loop (Operation stop)	

*1 It will be the number of times the main power supply is turned on if the control power supply is not connected. *2 It is not described on the AZ Series OPERATING MANUAL Function Edition. It indicates the input status of the IP address setting switch (IP ADDR $\times 1$).

Direct I/O

The arrangement of bits for direct input is indicated.

Bit 31	Bit 30	Bit 29	Bit 28	Bit 27	Bit 26	Bit 25	Bit 24
-	-	-	-	-	-	-	-
Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
-	-	-	-	-	-	-	-
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
VIR-IN3	VIR-IN2	VIR-IN1	VIR-IN0	-	-	-	-
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	-	-	IN1	IN0

- I/O status

The arrangement of bits for internal I/O is indicated.

- Input signals

- Output signals

Parameter ID	Description							
$\begin{gathered} 188 \\ (00 \mathrm{BCh}) \end{gathered}$	Bit 31	Bit 30	Bit 29	Bit 28	Bit 27	Bit 26	Bit 25	Bit 24
	MAREA	-	TIM	RND-ZERO	ZSG	RV-SLS	FW-SLS	RND-OVF
	Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
	ORGNSTLD	PRST-STLD	PRST-DIS	-	-	ELPRSTMON	ABSPEN	HOMEEND
	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
	AUTO-CD	CRNT	VA	TLC	-	IN-POS	-	SYS-BSY
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	INFO	MOVE	-	READY	SYS-RDY	ALM-B	ALM-A	CONSTOFF
$\begin{gathered} 189 \\ \text { (00BDh) } \end{gathered}$	Bit 31	Bit 30	Bit 29	Bit 28	Bit 27	Bit 26	Bit 25	Bit 24
	-	-	-	-	-	-	-	-
	Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
	-	-	USR-OUT1	USR-OUT0	-	-	-	-
	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
	-	-	-	-	-	-	MBC	MPS
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	AREA7	AREA6	AREA5	AREA4	AREA3	AREA2	AREA1	AREA0
$\begin{gathered} 190 \\ \text { (OOBEh) } \end{gathered}$	Bit 31	Bit 30	Bit 29	Bit 28	Bit 27	Bit 26	Bit 25	Bit 24
	D-END7	D-END6	D-END5	D-END4	D-END3	D-END2	D-END1	D-END0
	Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
	M-ACT7	M-ACT6	M-ACT5	M-ACT4	M-ACT3	M-ACT2	M-ACT1	M-ACT0
	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
	M-CHG	-	DCMD- FULL	DCMD- RDY	-	NEXT-LAT	JUMP1-LAT	JUMPO-LAT
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	DELAY-BSY	SEQ-BSY	PAUSE-BSY	OPE-BSY	-	-	SPD-LMTD	CRNTLMTD
$\begin{gathered} 191 \\ \text { (00BFh) } \end{gathered}$	Bit 31	Bit 30	Bit 29	Bit 28	Bit 27	Bit 26	Bit 25	Bit 24
	INFO-RBT	INFO-CFG	INFO- IOTEST	INFODSLMTD	-	-	-	-
	Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
	-	-	INFO-ODO	INFO-TRIP	INFOCULD1	INFOCULD0	$\begin{aligned} & \text { INFO-RV- } \\ & \text { OT } \end{aligned}$	$\begin{aligned} & \text { INFO-FW- } \\ & \text { OT } \end{aligned}$
	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
	$\begin{aligned} & \text { INFO- } \\ & \text { NET-E } \end{aligned}$	INFO- RND-E	$\begin{aligned} & \text { INFO- } \\ & \text { EGR-E } \end{aligned}$	-	$\begin{aligned} & \text { INFO-PR- } \\ & \text { REQ } \end{aligned}$	$\begin{aligned} & \text { INFO- } \\ & \text { ZHOME } \end{aligned}$	INFOSTART	INFO-SPD
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	-	INFOOLTIME	INFOUVOLT	INFOOVOLT	INFO- MTRTMP	INFODRVTMP	INFOPOSERR	INFOUSRIO

4 Operation data R/W commands

This is a method in which the parameter ID (base address) of the base operation data number is specified to Input data.
Refer to " $4-3$ Setting example" on $p .79$ for how to use the base address.

4-1 Base address of each operation data number

Base address		Operation data	Base address		Operation data
Dec	Hex		Dec	Hex	
3072	OCOOh	No. 0	4288	10COh	No. 38
3104	OC20h	No. 1	4320	10EOh	No. 39
3136	OC40h	No. 2	4352	1100h	No. 40
3168	0C60h	No. 3	4384	1120h	No. 41
3200	0C80h	No. 4	4416	1140h	No. 42
3232	OCAOh	No. 5	4448	1160h	No. 43
3264	OCCOh	No. 6	4480	1180h	No. 44
3296	OCEOh	No. 7	4512	11A0h	No. 45
3328	0D00h	No. 8	4544	11COh	No. 46
3360	0D20h	No. 9	4576	11EOh	No. 47
3392	0D40h	No. 10	4608	1200h	No. 48
3424	0D60h	No. 11	4640	1220h	No. 49
3456	0D80h	No. 12	4672	1240h	No. 50
3488	ODAOh	No. 13	4704	1260h	No. 51
3520	ODCOh	No. 14	4736	1280h	No. 52
3552	ODEOh	No. 15	4768	12A0h	No. 53
3584	OEOOh	No. 16	4800	12COh	No. 54
3616	OE20h	No. 17	4832	12EOh	No. 55
3648	OE40h	No. 18	4864	1300h	No. 56
3680	OE60h	No. 19	4896	1320h	No. 57
3712	0E80h	No. 20	4928	1340h	No. 58
3744	OEAOh	No. 21	4960	1360h	No. 59
3776	OECOh	No. 22	4992	1380h	No. 60
3808	OEEOh	No. 23	5024	13A0h	No. 61
3840	OFOOh	No. 24	5056	13COh	No. 62
3872	OF20h	No. 25	5088	13EOh	No. 63
3904	0F40h	No. 26	5120	1400h	No. 64
3936	0F60h	No. 27	5152	1420h	No. 65
3968	0F80h	No. 28	5184	1440h	No. 66
4000	OFAOh	No. 29	5216	1460h	No. 67
4032	OFCOh	No. 30	5248	1480h	No. 68
4064	OFEOh	No. 31	5280	14A0h	No. 69
4096	1000h	No. 32	5312	14COh	No. 70
4128	1020h	No. 33	5344	14EOh	No. 71
4160	1040h	No. 34	5376	1500h	No. 72
4192	1060h	No. 35	5408	1520h	No. 73
4224	1080h	No. 36	5440	1540h	No. 74
4256	10A0h	No. 37	5472	1560h	No. 75

Base address		Operation data
Dec	Hex	
5504	1580h	No. 76
5536	15A0h	No. 77
5568	15COh	No. 78
5600	15E0h	No. 79
5632	1600h	No. 80
5664	1620h	No. 81
5696	1640h	No. 82
5728	1660h	No. 83
5760	1680h	No. 84
5792	16A0h	No. 85
5824	16COh	No. 86
5856	16EOh	No. 87
5888	1700h	No. 88
5920	1720h	No. 89
5952	1740h	No. 90
5984	1760h	No. 91
6016	1780h	No. 92
6048	17A0h	No. 93
6080	17C0h	No. 94
6112	17EOh	No. 95
6144	1800h	No. 96
6176	1820h	No. 97
6208	1840h	No. 98
6240	1860h	No. 99
6272	1880h	No. 100
6304	18A0h	No. 101
6336	18COh	No. 102
6368	18EOh	No. 103
6400	1900h	No. 104
6432	1920h	No. 105
6464	1940h	No. 106
6496	1960h	No. 107
6528	1980h	No. 108
6560	19A0h	No. 109
6592	19COh	No. 110
6624	19EOh	No. 111
6656	1A00h	No. 112
6688	1A20h	No. 113

Base address		Operation data
Dec	Hex	
6720	1A40h	No. 114
6752	1A60h	No. 115
6784	1A80h	No. 116
6816	1AAOh	No. 117
6848	1ACOh	No. 118
6880	1AEOh	No. 119
6912	1B00h	No. 120
6944	1B20h	No. 121
6976	1B40h	No. 122
7008	1860h	No. 123
7040	1B80h	No. 124
7072	1BAOh	No. 125
7104	1BCOh	No. 126
7136	1BEOh	No. 127
7168	1C00h	No. 128
7200	1C20h	No. 129
7232	1C40h	No. 130
7264	1660h	No. 131
7296	1C80h	No. 132
7328	1CAOh	No. 133
7360	1CCOh	No. 134
7392	1CEOh	No. 135
7424	1000h	No. 136
7456	1D20h	No. 137
7488	1D40h	No. 138
7520	1D60h	No. 139
7552	1D80h	No. 140
7584	1DAOh	No. 141
7616	1DCOh	No. 142
7648	1DEOh	No. 143
7680	1E00h	No. 144
7712	1E20h	No. 145
7744	1E40h	No. 146
7776	1E60h	No. 147
7808	1E80h	No. 148
7840	1EAOh	No. 149
7872	1ECOh	No. 150
7904	1EEOh	No. 151

Base address		Operation data									
Dec	Hex		Dec	Hex		Dec	Hex		Dec	Hex	
7936	1F00h	No. 152	8768	2240h	No. 178	9600	2580h	No. 204	10432	28C0h	No. 230
7968	1F20h	No. 153	8800	2260h	No. 179	9632	25A0h	No. 205	10464	28E0h	No. 231
8000	1F40h	No. 154	8832	2280h	No. 180	9664	25C0h	No. 206	10496	2900h	No. 232
8032	1F60h	No. 155	8864	22A0h	No. 181	9696	25E0h	No. 207	10528	2920h	No. 233
8064	1F80h	No. 156	8896	22C0h	No. 182	9728	2600h	No. 208	10560	2940h	No. 234
8096	1FA0h	No. 157	8928	22E0h	No. 183	9760	2620h	No. 209	10592	2960h	No. 235
8128	1FCOh	No. 158	8960	2300h	No. 184	9792	2640h	No. 210	10624	2980h	No. 236
8160	1FEOh	No. 159	8992	2320h	No. 185	9824	2660h	No. 211	10656	29A0h	No. 237
8192	2000h	No. 160	9024	2340h	No. 186	9856	2680h	No. 212	10688	29C0h	No. 238
8224	2020h	No. 161	9056	2360h	No. 187	9888	26A0h	No. 213	10720	29E0h	No. 239
8256	2040h	No. 162	9088	2380h	No. 188	9920	26C0h	No. 214	10752	2A00h	No. 240
8288	2060h	No. 163	9120	23A0h	No. 189	9952	26E0h	No. 215	10784	2A20h	No. 241
8320	2080h	No. 164	9152	23C0h	No. 190	9984	2700h	No. 216	10816	2A40h	No. 242
8352	20A0h	No. 165	9184	23E0h	No. 191	10016	2720h	No. 217	10848	2A60h	No. 243
8384	20C0h	No. 166	9216	2400h	No. 192	10048	2740h	No. 218	10880	2A80h	No. 244
8416	20E0h	No. 167	9248	2420h	No. 193	10080	2760h	No. 219	10912	2AAOh	No. 245
8448	2100h	No. 168	9280	2440h	No. 194	10112	2780h	No. 220	10944	2ACOh	No. 246
8480	2120h	No. 169	9312	2460h	No. 195	10144	27A0h	No. 221	10976	2AEOh	No. 247
8512	2140h	No. 170	9344	2480h	No. 196	10176	27C0h	No. 222	11008	2B00h	No. 248
8544	2160h	No. 171	9376	24A0h	No. 197	10208	27E0h	No. 223	11040	2B20h	No. 249
8576	2180h	No. 172	9408	24C0h	No. 198	10240	2800h	No. 224	11072	2B40h	No. 250
8608	21A0h	No. 173	9440	24E0h	No. 199	10272	2820h	No. 225	11104	2B60h	No. 251
8640	21C0h	No. 174	9472	2500h	No. 200	10304	2840h	No. 226	11136	2B80h	No. 252
8672	21E0h	No. 175	9504	2520h	No. 201	10336	2860h	No. 227	11168	2BAOh	No. 253
8704	2200h	No. 176	9536	2540h	No. 202	10368	2880h	No. 228	11200	2BCOh	No. 254
8736	2220h	No. 177	9568	2560h	No. 203	10400	28A0h	No. 229	11232	2BEOh	No. 255

4-2 Parameter ID

The setting item of operation data is set with the operation data R/W command.
The parameter ID for the setting item is arranged based on the base address of the operation data number. (Base address \Rightarrow p.76)
For example, in the case of the setting item "Position," 1 is added to the base address.

Parameter ID	Name	Setting range	Initial value	Update
Base address +0	Operation type	1: Absolute positioning 2: Incremental positioning (based on command position) 3: Incremental positioning (based on feedback position) 7: Continuous operation (position control) 8: Wrap absolute positioning 9: Wrap proximity positioning 10: Wrap absolute positioning (FWD) 11: Wrap absolute positioning (RVS) 12: Wrap absolute push-motion 13: Wrap proximity push-motion 14: Wrap push-motion (FWD) 15: Wrap push-motion (RVS) 16: Continuous operation (Speed control) 17: Continuous operation (Push-motion) 18: Continuous operation (Torque control) 20: Absolute positioning push-motion 21: Incremental positioning push-motion (based on command position) 22: Incremental positioning push-motion (based on feedback position)	2	B
Base address +1	Position	-2,147,483,648 to 2,147,483,647 steps	0	B
Base address +2	Operating speed	$-4,000,000$ to $4,000,000 \mathrm{~Hz}$	1,000	B
Base address +3	Starting/changing rate	$\begin{aligned} & 1 \text { to } 1,000,000,000(1=0.001 \mathrm{kHz} / \mathrm{s} \text {, } \\ & 1=0.001 \mathrm{~s}, \text { or } 1=0.001 \mathrm{~ms} / \mathrm{kHz}) \end{aligned}$	1,000,000	B
Base address +4	Stop	$\begin{aligned} & 1 \text { to } 1,000,000,000(1=0.001 \mathrm{kHz} / \mathrm{s} \text {, } \\ & 1=0.001 \mathrm{~s}, \text { or } 1=0.001 \mathrm{~ms} / \mathrm{kHz}) \end{aligned}$	1,000,000	B
Base address +5	Operating current	0 to 1,000 (1=0.1 \%)	1,000	B
Base address +6	Drive-complete delay time	0 to 65,535 ($1=0.001$ s)	0	B
Base address +7	Link	0: No link 1: Manual sequential 2: Automatic sequential 3: Continuous sequential operation	0	B
Base address +8	Next data number	$\begin{array}{\|l\|} \hline-256: \text { Stop } \\ -2: \downarrow \downarrow(+2) \\ -1: \downarrow(+1) \\ 0 \text { to } 255 \text { : Operation data number } \end{array}$	-1	B
Base address +9	Area offset	-2,147,483,648 to 2,147,483,647 steps	0	B
Base address +10	Area width	$\begin{array}{\|l\|} \hline-1: \text { Disable } \\ 0 \text { to } 4,194,303 \text { : Set by } 1 \text { step } \end{array}$	-1	B
Base address +11	Loop count	0: None (-) 2 to 255: Number of loops (loop 2 \{ to loop 255 \{)	0	B
Base address +12	Loop offset	-4,194,304 to 4,194,303 steps	0	B
Base address +13	Loop end point	```0: None (-) 1: Loop end (} L-End)```	0	B
Base address +14	(Low) I/O event number	-1: None (-) 0 to 31: Operation I/O event number (0 to 31)	-1	B

Parameter ID	Name	Setting range	Initial value	Update
Base address +15	(High) I/O event number	-1 None (-) 0 to 31: Operation I/O event number $(0$ to 31)	-1	B

4-3 Setting example

As an example, this section explains how to set the following operation data to the operation data No. 0 to No. 2 .

Setting item	Operation data No.0	Operation data No.1	Operation data No.2
Operation type	Absolute positioning	Incremental positioning (based on command position)	Incremental positioning (based on feedback position)
Position [step]	1,000	1,000	1,000
Operating speed [Hz]	1,000	1,000	1,000
Operating current [\%]	50.0	70.0	100.0

Setting of operation data No. 0

Seeing the table on p.76, we can find that the base address of the operation data No. 0 is " 3072 (0C00h)." Based on this base address, the parameter ID for the setting item is calculated from the table on p.78.

Base address 3072 (0C00h)	Setting item	Parameter ID			Setting value
		Calculation method	Dec	Hex	
	Operation type	Base address +0	$3072+0=3072$	0C00h	1
	Position	Base address +1	$3072+1=3073$	0C01h	1,000
	Operating speed	Base address +2	$3072+2=3074$	0C02h	1,000
	Operating current	Base address +5	$3072+5=3077$	0C05h	500

Setting of operation data No. 1

Seeing the table on p.76, we can find that the base address of the operation data No. 1 is " 3104 (0C20h)." Based on this base address, the parameter ID for the setting item is calculated from the table on p.78.

Base address
3104 (0C20h)

Setting item	Parameter ID			Setting value
	Calculation method	Dec	Hex	
Operation type	Base address +0	$3104+0=3104$	$0 C 20 \mathrm{~h}$	0
Position	Base address +1	$3104+1=3105$	$0 C 21 \mathrm{~h}$	1,000
Operating speed	Base address +2	$3104+2=3106$	$0 C 22 \mathrm{~h}$	1,000
Operating current	Base address +5	$3104+5=3109$	0 O 25 h	700

Setting of operation data No. 2

Seeing the table on p.76, we can find that the base address of the operation data No. 2 is " 3136 (0C40h)." Based on this base address, the parameter ID for the setting item is calculated from the table on p.78.

Base address$3136 \text { (0C40h) }$	Setting item	Parameter ID			Setting value
		Calculation method	Dec	Hex	
	Operation type	Base address +0	$3136+0=3136$	0C40h	3
	Position	Base address +1	$3136+1=3137$	0C41h	1,000
	Operating speed	Base address +2	$3136+2=3138$	0C42h	1,000
	Operating current	Base address +5	$3136+5=3141$	0C45h	1,000

5 Operation I/O event R/W commands

If a specified event (ON/OFF of I/O) is generated during operation of the motor, another operation can be started. This is called operation I/O event. This chapter explains the address to execute the operation I/O event.

5-1 Base address of operation I/O event

Base address		Operation I/O				
event number			$	$	Dec	Hex
:---:	:---:					

Base address		Operation I/O event number
Dec	Hex	
2648	0A58h	11
2656	0A60h	12
2664	0A68h	13
2672	0A70h	14
2680	0A78h	15
2688	0A80h	16
2696	0A88h	17
2704	0A90h	18
2712	0A98h	19
2720	OAAOh	20
2728	OAA8h	21

Base address		Operation I/O event number
Dec	Hex	
2736	0ABOh	23
2744	0AB8h	24
2752	0AC0h	25
2760	0AC8h	26
2768	0AD0h	27
2776	0AD8h	28
2784	0AEOh	29
2792	0AE8h	30
2800	0AFOh	31
2808	0AF8h	

5-2 Parameter ID for operation I/O event R/W command

The setting item of operation I/O event is set with the operation I/O event R/W command.
The parameter ID for the setting item is arranged based on the base address of the operation I/O event.
For example, in the case of the setting item "Dwell," 2 is added to the base address.

Parameter ID	Name	Setting range	Initial value	Update
Base address +0	Link	0 : No link 1: Manual sequential 2: Automatic sequential 3: Continuous sequential operation	0	B
Base address +1	Next data number	$\begin{aligned} & \hline-256: \text { Stop } \\ & -2: \downarrow \downarrow(+2) \\ & -1: \downarrow(+1) \\ & 0 \text { to } 255 \text { : Operation data number } \end{aligned}$	-256	B
Base address +2	Dwell	0 to 65,535 ($1=0.001 \mathrm{~s}$)	0	B
Base address +3	Event trigger I/O	Input signal list \Rightarrow p. 96 Output signal list \Rightarrow p. 97	0: No function	B
Base address +4	Event trigger type	0 : Non 1: ON (calculated cumulative ms) 2: ON (ms) 3: OFF (calculated cumulative ms) 4: OFF (ms) 5: ON edge 6: OFF edge 7: ON (cumulative ms) 8: OFF (cumulative ms)	0	B
Base address +5	Event trigger counter	0 to 65,535 (1=1 ms or 1=once)	0	B

6 Protect release commands

The key codes for reading/writing of data from/to the backup area and the key codes for release of function limitation by the HMI input are set.
Refer to the AZ Series OPERATING MANUAL Function Edition for details about parameters. When checking the AZ Series OPERATING MANUAL Function Edition, use the parameter name instead of the parameter ID.

Parameter ID		Name	Setting range	Initial value
Dec	Hex			
32	0020 h	Backup DATA access key		0
33	0021 h	Backup DATA write key	Refer to the next table.	
34	0022 h	HMI release key		

Key code table

Process that requires protect release	Command name	Key code
Data writing to backup area	Backup DATA access key	20519253 (01391955h)
	Backup DATA write key	1977326743 (75DB9C97h)
Data reading from backup area	Backup DATA access key	20519253 (01391955h)
Release of limitation by HMI input	HMI release key	864617234 (33890312h)

7 Extended operation data setting R/W command

Parameters for extended operation data setting can be set.
Refer to the AZ Series OPERATING MANUAL Function Edition for details about parameters. When checking the AZ
Series OPERATING MANUAL Function Edition, use the parameter name instead of the parameter ID.

Parameter ID		Name	Setting range	Initial value	Update
Dec	Hex				
320	0140h	Common acceleration rate or time	1 to $1,000,000,000(1=0.001 \mathrm{kHz} / \mathrm{s}$, $1=0.001 \mathrm{~s}$, or $1=0.001 \mathrm{~ms} / \mathrm{kHz}$)	1,000,000	A
321	0141h	Common stopping deceleration	$\begin{aligned} & 1 \text { to } 1,000,000,000(1=0.001 \mathrm{kHz} / \mathrm{s}, \\ & 1=0.001 \mathrm{~s}, \text { or } 1=0.001 \mathrm{~ms} / \mathrm{kHz}) \end{aligned}$	1,000,000	A
326	0146h	Rate selection	0 : The common rate is used 1 :The rate of each operation data is used	1	A
2048	0800h	Repeat start operation data number	$\begin{aligned} & \text {-1: Disable } \\ & 0 \text { to } 255 \text { : Operation data number } \end{aligned}$	-1	A
2049	0801h	Repeat end operation data number	$\begin{aligned} & \text {-1: Disable } \\ & 0 \text { to } 255 \text { : Operation data number } \end{aligned}$	-1	A
2050	0802h	Repeat time	$\begin{aligned} & \text {-1: Disable } \\ & 0 \text { to 100,000,000 } \end{aligned}$	-1	A

Note Rewrite the parameters of the extended operation data setting R/W command while operation is stopped.

8 Parameter R/W commands

These commands are used to write or read parameters.
Refer to the AZ Series OPERATING MANUAL Function Edition for details about parameters. When checking the AZ Series OPERATING MANUAL Function Edition, use the parameter name instead of the parameter ID.

8-1 Driver action simulation setting parameter

Parameter ID		Name	Setting range	Initial value	Update	
Dec	Hex		0: Use real motor $1:$ Virtual motor (when ABZO not connected $=$ no ABZO information) $2:$ Virtual motor (when ABZO not connected $=1,800$ rev wrap enable) $3:$ Virtual motor (when ABZO not connected $=900$ rev wrap enable)	0	D	
	Driver simulation					
mode						

8-2 Base setting parameter

Parameter ID		Name	Setting range	Initial value	Update
Dec	Hex				
294	0126h	Base current	0 to 1,000 (1=0.1 \%)	1,000	A
296	0128h	Stop current	0 to 1,000 (1=0.1 \%)	500	A
297	0129h	Command filter setting	1: LPF (speed filter) 2: Moving average filter	1	B
298	012Ah	Command filter time constant	0 to 200 ms	1	B
300	012Ch	Smooth drive function	0: Disable 1: Enable	1	C
301	012Dh	Current control mode	0: Follow the CCM input 1: Alpha control mode (CST) 2: Servo emulation mode (SVE)	0	A
302	012Eh	Servo emulation (SVE) ratio	0 to 1,000 (1=0.1 \%)	1,000	A
303	012Fh	SVE position loop gain	1 to 50	10	A
304	0130h	SVE speed loop gain	10 to 200	180	A
305	0131h	SVE speed loop integral time constant	100 to 2000 ($1=0.1 \mathrm{~ms}$)	1,000	A
306	0132h	Automatic current cutback function	0 : Disable 1: Enable	1	A
307	0133h	Automatic current cutback switching time	0 to 1,000 ms	100	A
308	0134h	Operating current ramp up rate	0 to $100 \mathrm{~ms} / 100 \%$	0	A
309	0135h	Operating current ramp down rate	0 to $100 \mathrm{~ms} / 100 \%$	0	A
311	0137h	Resonance suppression control frequency	100 to $2,000 \mathrm{~Hz}$	1,000	A
312	0138h	Resonance suppression control gain	-500 to 500	0	A
313	0139h	Deviation acceleration suppressing gain	0 to 500	45	A
506	01FAh	Main power mode *	-1 : Automatic discrimination (discriminates the input power supply voltage automatically) $0: 24 \mathrm{VDC}$ $1: 48 \mathrm{VDC}$	-1	D

* It is used to set the voltage mode of the main power supply. The voltage mode of the main power supply is discriminated in 50 ms after the main power supply is turned on. Set the "Main power mode" parameter to "0: 24 VDC " or "1: 48 VDC " when the main power supply starts up slowly or the voltage of the main power supply is unstable.

8-3 Coordinate parameters

Parameter ID		Name	Setting range	Initial value	Update
Dec	Hex				
451	01C3h	Software overtravel	-1: Disable 0: Immediate stop 1: Deceleration stop 2: Immediate stop with alarm 3: Deceleration stop with alarm	3	A
452	01C4h	Positive software limit	-2,147,483,648 to 2,147,483,647 steps	2,147,483,647	A
453	01C5h	Negative software limit	-2,147,483,648 to $2,147,483,647$ steps	-2,147,483,648	A
454	01C6h	Preset position	-2,147,483,648 to 2,147,483,647 steps	0	A

8-4 Operation parameters

Parameter ID			Same	Setting range	Initial value
Dec	Hex		0 to $4,000,000 \mathrm{~Hz}$	500	B
322	0142 h	Starting speed	$0: \mathrm{kHz} / \mathrm{s}$ $1: \mathrm{s}$ $2: \mathrm{ms} / \mathrm{kHz}$		
327	0147 h	Acceleration/deceleration unit	O: Disable $1:$ Enable	C	
328	0148 h	Permission of absolute positioning without setting absolute coordinates	0	B	

8-5 Direct data operation parameters

Parameter ID		Name	Setting range	Initial value	Update
Dec	Hex				
272	0110h	Direct data operation zero speed command action	0 : Deceleration stop command 1: Speed zero command	0	B
24852	6114h	Direct data operation trigger setting	-6: Operation type -5: Position -4: Speed -3: Starting/changing rate -2: Stopping deceleration -1 : Operating current 0: Disable 1: Apply all data	1	A

8-6 ABZO sensor setting parameters

Parameter ID		Name	Setting range	Initial value	Update
Dec	Hex				
2032	07FOh	Mechanism settings	0 : Prioritize ABZO setting 1: Manual setting	0	D
2034	07F2h	Initial coordinate generation \& wrap coordinate setting	0 : Prioritize ABZO setting 1: Manual setting	0	D
2035	07F3h	Mechanism limit parameter setting	0: Follow ABZO setting 1: Disable	0	D
2036	07F4h	Mechanism protection parameter setting	0: Follow ABZO setting 1: Disable	0	D
2037	07F5h	JOG/HOME/ZHOME operation setting	0: Prioritize ABZO setting 1: Manual setting	0	D

8-7 Mechanism settings parameters

Parameter ID		Name	Setting range	Initial value	Update
Dec	Hex				
448	01COh	Electronic gear A	1 to 65,535	1	C
449	01C1h	Electronic gear B	1 to 65,535	1	C
450	01C2h	Motor rotation direction	0 : Positive side=Counterclockwise 1: Positive side=Clockwise 2: Positive side=Counterclockwise (the driver parameter is applied) 3: Positive side=Clockwise (the driver parameter is applied)	1	C
2017	07E1h	Mechanism lead pitch	1 to 32,767	1	C
2033	07F1h	Gear ratio setting	0 : Gear ratio setting disable 1 to 32,767 : Gear ratio ($1=0.01$)	0	C
2553	09F9h	Mechanism lead decimal digit setting	$\begin{array}{\|l\|} \hline 0: \times 1[\mathrm{~mm}] \\ 1: \times 0.1[\mathrm{~mm}] \\ 2: \times 0.01[\mathrm{~mm}] \\ 3: \times 0.001[\mathrm{~mm}] \end{array}$	0	C

8-8 Initial coordinate generation \& wrap coordinate parameters

Parameter ID		Name	Setting range	Initial value	Update
Dec	Hex		1	C	
455	01 C 7 h	Wrap setting	$0:$ Disable $1:$ Enable		
457	01 C 9 h	Initial coordinate generation \& wrap setting range	Refer to the next table. ($1=0.1$ rev $)$	10	C
459	01 CBh	Initial coordinate generation \& wrap range offset ratio	0 to $10,000(1=0.01 \%)$	5,000	C
460	01 CCh	Initial coordinate generation \& wrap range offset value	$-536,870,912$ to $536,870,911$ steps	0	C
461	01 CDh	The number of the RND-ZERO output in wrap range	1 to $536,870,911$ divisions	1	C

- Value that can be set in the "Initial coordinate generation \& wrap setting range" parameter

Since the internal coordinate of the ABZO sensor is 1,800 rev (or 900 rev), select a value from the table, and set in the "Initial coordinate generation \& wrap setting range" parameter, In the table, the values which are surrounded with thick box border cannot be set for the ABZO sensor of 900 revolutions.
memo The table shows the values when setting with the MEXEO2 software. When setting via Implicit communication, multiply the values in the table by 10 .

Wrap setting range [rev]						
0.5	1.8	4.8	12.0	25.0	72.0	200.0
0.6	2.0	5.0	12.5	30.0	75.0	225.0
0.8	2.4	6.0	14.4	36.0	90.0	300.0
0.9	2.5	7.2	15.0	37.5	100.0	360.0
1.0	3.0	7.5	18.0	40.0	112.5	450.0
1.2	3.6	8.0	20.0	45.0	120.0	600.0
1.5	4.0	9.0	22.5	50.0	150.0	900.0
1.6	4.5	10.0	24.0	60.0	180.0	$1,800.0$

8-9 JOG/HOME/ZHOME operation information setting parameters

Parameter ID		Name	Setting range	Initial value	Update
Dec	Hex				
336	0150h	(JOG) Travel amount	1 to 8,388,607 steps	1	B
337	0151h	(JOG) Operating speed	1 to 4,000,000 Hz	1,000	B
338	0152h	(JOG) Acceleration/deceleration	$\begin{aligned} & 1 \text { to } 1,000,000,000(1=0.001 \mathrm{kHz} / \mathrm{s}, \\ & 1=0.001 \mathrm{~s}, \text { or } 1=0.001 \mathrm{~ms} / \mathrm{kHz}) \end{aligned}$	1,000,000	B
339	0153h	(JOG) Starting speed	0 to 4,000,000 Hz	500	B
340	0154h	(JOG) Operating speed (high)	1 to $4,000,000 \mathrm{~Hz}$	5000	B
344	0158h	(ZHOME) Operating speed	1 to 4,000,000 Hz	5000	B
345	0159h	(ZHOME) Acceleration/deceleration	$\begin{aligned} & 1 \text { to } 1,000,000,000(1=0.001 \mathrm{kHz} / \mathrm{s} \text {, } \\ & 1=0.001 \mathrm{~s}, \text { or } 1=0.001 \mathrm{~ms} / \mathrm{kHz}) \end{aligned}$	1,000,000	B
346	015Ah	(ZHOME) Starting speed	0 to $4,000,000 \mathrm{~Hz}$	500	B
350	015Eh	JOG/HOME/ZHOME command filter time constant	1 to 200 ms	1	B
351	015Fh	JOG/HOME/ZHOME operating current	0 to 1,000 (1=0.1 \%)	1,000	B
352	0160h	(HOME) Home-seeking mode	0:2 sensors 1:3 sensors* 2: One-way rotation 3: Push-motion	2	B
353	0161h	(HOME) Starting direction	0: Negative side 1: Positive side	1	B
354	0162h	(HOME) Acceleration/deceleration	$\begin{aligned} & 1 \text { to } 1,000,000,000(1=0.001 \mathrm{kHz} / \mathrm{s} \text {, } \\ & 1=0.001 \mathrm{~s}, \text { or } 1=0.001 \mathrm{~ms} / \mathrm{kHz}) \end{aligned}$	1,000,000	B
355	0163h	(HOME) Starting speed	1 to 4,000,000 Hz	500	B
356	0164h	(HOME) Operating speed	1 to $4,000,000 \mathrm{~Hz}$	1,000	B
357	0165h	(HOME) Last speed	1 to $10,000 \mathrm{~Hz}$	500	B
358	0166h	(HOME) SLIT detection	0: Disable 1: Enable	0	B
359	0167h	(HOME) TIM/ZSG signal detection	0 : Disable 1:TIM output 2: ZSG output	0	B
360	0168h	(HOME) Position offset	```-2,147,483,647 to 2,147,483,647 steps```	0	B

Parameter ID		Name	Setting range	Initial value	Update
Dec	Hex				
361	0169h	(HOME) Backward steps in 2 sensor home-seeking	0 to 8,388,607 steps	500	B
362	016Ah	(HOME) Operating amount in unidirectional home-seeking	0 to 8,388,607 steps	500	B
363	016Bh	(HOME) Operating current for push-home-seeking	0 to 1,000 (1=0.1 \%)	1,000	B
364	016Ch	(HOME) Backward steps after first entry in push-home-seeking	0 to 8,388,607 steps	0	B
365	016Dh	(HOME) Pushing time in push-homeseeking	1 to 65,535 ms	200	B
366	016Eh	(HOME) Backward steps in push-homeseeking	0 to 8,388,607 steps	500	B

* Two input signals are provided for the mini Driver. Return-to-home operation of the 3-sensor mode requires three inputs: HOMES input, FW-LS input, and RV-LS input. Therefore, return-to-home operation of the 3-sensor mode is not recommended for the mini Driver.

8-10 Alarm setting parameters

| Parameter ID | | Name | Setting range | | Initial value |
| :---: | :---: | :--- | :--- | :---: | :---: | Update

8-11 Information setting parameters

Parameter ID		Name	Setting range	Initial value	Update
Dec	Hex				
416	01A0h	Driver temperature information (INFODRVTMP)	40 to $85{ }^{\circ} \mathrm{C}$	85	A
417	01A1h	Overload time information (INFOOLTIME)	1 to 300 ($1=0.1 \mathrm{~s}$)	50	A
418	01A2h	Speed information (INFO-SPD)	0: Disable 1 to $12,000 \mathrm{r} / \mathrm{min}$	0	A
421	01A5h	Position deviation information (INFOPOSERR)	1 to 30,000 (1=0.01 rev)	300	A
424	01A8h	Motor temperature information (INFOMTRTMP)	40 to $120^{\circ} \mathrm{C}$	85	A
427	01ABh	Overvoltage information (INFO-OVOLT)	140 to 630 (1=0.1 V)	630	A
428	01ACh	Undervoltage information (INFOUVOLT)	140 to 630 (1=0.1 V)	140	A
431	01AFh	Tripmeter information (INFO-TRIP)	$\begin{aligned} & \text { 0: Disable } \\ & 1 \text { to } 2,147,483,647 \text { (} 1=0.1 \mathrm{kRev} \text {) } \end{aligned}$	0	A
432	01B0h	Odometer information (INFO-ODO)	$\begin{aligned} & \text { 0: Disable } \\ & 1 \text { to } 2,147,483,647(1=0.1 \mathrm{kRev}) \end{aligned}$	0	A
433	01B1h	Cumulative load 0 information (INFOCULDO)	0 to 2,147,483,647	0	A
434	01B2h	Cumulative load 1 information (INFOCULD1)	0 to 2,147,483,647	0	A

słs!| Ql ләұәшелед t

Parameter ID		Name	Setting range	Initial value	Update
Dec	Hex				
435	01B3h	Cumulative load value auto clear	0 : Disable 1: Enable	1	A
436	01B4h	Cumulative load value count divisor	1 to 32,767	1	A
444	01BCh	INFO-USRIO output selection	Output signals list \Rightarrow p. 97	128: CONST-OFF	A
445	01BDh	INFO-USRIO output inversion	0: Not invert 1: Invert	0	A
446	01BEh	Information LED condition	0 : Disable (LED does not blink) 1: Enable (LED blinks)	1	A
447	01BFh	Information auto clear	```0: Disabled (not turned OFF automatically) 1:Enabled (turned OFF automatically)```	1	A
1952	07A0h	INFO action (Assigned I/O status information (INFO-USRIO))	0 : No info reflect (Only the bit output is ON.) 1: Info reflect (The bit output and the INFO output are ON and the LED blinks.)	1	A
1953	07A1h	INFO action (Position deviation information (INFO-POSERR))			
1954	07A2h	INFO action (Driver temperature information (INFO-DRVTMP))			
1955	07A3h	INFO action (Motor temperature information (INFO-MTRTMP))			
1956	07A4h	INFO action (Overvoltage information (INFO-OVOLT))			
1957	07A5h	INFO action (Undervoltage information (INFO-UVOLT))			
1958	07A6h	INFO action (Overload time information (INFO-OLTIME))			
1960	07A8h	INFO action (Speed information (INFOSPD))			
1961	07A9h	INFO action (Start operation error information (INFO-START))			
1962	07AAh	INFO action (Start ZHOME error information (INFO-ZHOME))			
1963	07ABh	INFO action (PRESET request information (INFO-PR-REQ))			
1965	07ADh	INFO action (Electronic gear setting error information (INFO-EGR-E))			
1966	07AEh	INFO action (Wrap setting error information (INFO-RND-E))			
1968	07B0h	INFO action (Forward operation prohibition information (INFO-FW-OT))			
1969	07B1h	INFO action (Reverse operation prohibition information (INFO-RV-OT))			
1970	07B2h	INFO action (Cumulative load 0 information (INFO-CULDO))			
1971	07B3h	INFO action (Cumulative load 1 information (INFO-CULD1))			
1972	07B4h	INFO action (Tripmeter information (INFO-TRIP))			
1973	07B5h	INFO action (Odometer information (INFO-ODO))			
1980	07BCh	INFO action (Start operation restricted mode information (INFO-DSLMTD))			

Parameter ID			Name	Setting range	Initial value
Dec	Hex		Update		
1981	07BDh	INFO action (I/O test mode information (INFO-IOTEST))	0: No info reflect (Only the bit output is ON.)	1: Info reflect (The bit output and the INFO output are ON and the LED blinks.)	1

8-12 I/O parameters

Parameter ID		Name	Setting range	Initial value	Update
Dec	Hex				
1792	0700h	STOP/STOP-COFF input action	0: Both are immediate 1: (STOP) Dec. \& (STOP-COFF) Imm. 2: (STOP) Imm. \& (STOP-COFF) Dec. 3: Both are deceleration	3	A
1793	0701h	FW-LS, RV-LS input action	-1 : For homing sensor 0: Immediate stop 1: Deceleration stop 2: Immediate stop with alarm 3: Deceleration stop with alarm	2	A
1794	0702h	FW-BLK/RV-BLK input action	0 : Immediate stop 1: Deceleration stop	1	A
1795	0703h	IN-POS positioning completion signal range	0 to $180\left(1=0.1^{\circ}\right)$	18	A
1796	0704h	IN-POS positioning completion signal offset	-18 to 18 ($1=0.1^{\circ}$)	0	A
1797	0705h	D-SEL drive start function	0 : Without START-Func. (only select data) (Only operation data number selection) 1: With START-Func (Operation data number selection + START function)	1	A
1798	0706h	TEACH operation type setting	-1 : Not set 1: Absolute positioning 8: Wrap absolute positioning	1	A
1799	0707h	ZSG signal width	1 to 1,800 ($1=0.1^{\circ}$)	18	A
1800	0708h	RND-ZERO signal width	1 to 10,000 steps	10	A
1801	0709h	RND-ZERO signal source	0 : Based on feedback position 1: Based on command position	0	A
1802	070Ah	MOVE minimum ON time	0 to 255 ms	0	A
1803	070Bh	PAUSE standby condition selection	0 : Standstill mode (current cutback) 1: Operation mode (operating current is retained)	0	A
1805	070Dh	CRNT-LMT operating current limit value	0 to 1,000 ($1=0.1$ \%)	500	A
1806	070Eh	SPD-LMT speed limit type selection	0 : Ratio 1:Value	0	A
1807	070Fh	SPD-LMT speed limit ratio	1 to 100%	50	A
1808	0710h	SPD-LMT speed limit value	1 to 4,000,000 Hz	1,000	A
1809	0711h	JOG-C time from JOG-P to JOG	1 to 5,000 ($1=0.001 \mathrm{~s}$)	500	B
1810	0712h	JOG-C time from JOG to JOG-H	1 to 5,000 ($1=0.001 \mathrm{~s}$)	1,000	B

	Parameter ID		Name	Setting range	Initial value	Update
	Dec	Hex				
	1816	0718h	VA mode selection	0: Feedback speed attainment (speed at feedback position) 1: Speed at command position (only internal profile) 2: Speed at feedback position \& command position (only internal profile)	0	B
	1817	0719h	VA detection speed range	1 to $200 \mathrm{r} / \mathrm{min}$	30	B
	1818	071Ah	MAREA output source	0 : Feedback position (ON after operation) 1: Command position (ON after operation) 2: Feedback position (MAREA output OFF at completion) 3: Command position (MAREA output OFF at completion)	0	A
	1856	0740h	AREAO positive direction position/offset	-2,147,483,648 to 2,147,483,647 steps	0	A
	1857	0741h	AREAO negative direction position/detection range			
	1858	0742h	AREA1 positive direction position/offset			
	1859	0743h	AREA1 negative direction position/detection range			
	1860	0744h	AREA2 positive direction position/offset			
	1861	0745h	AREA2 negative direction position/detection range			
	1862	0746h	AREA3 positive direction position/offset			
ס	1863	0747h	AREA3 negative direction position/detection range			
$\begin{aligned} & \frac{0}{3} \\ & \underset{\sim}{0} \\ & \stackrel{1}{2} \end{aligned}$	1864	0748h	AREA4 positive direction position/offset			
$\stackrel{\square}{\square}$	1865	0749h	AREA4 negative direction position/detection range			
$\begin{aligned} & \bar{n} \\ & \underset{\sim}{1} \end{aligned}$	1866	074Ah	AREA5 positive direction position/offset			
	1867	074Bh	AREA5 negative direction position/detection range			
	1868	074Ch	AREA6 positive direction position/offset			
	1869	074Dh	AREA6 negative direction position/detection range			
	1870	074Eh	AREA7 positive direction position/offset			
	1871	074Fh	AREA7 negative direction position/detection range			
	1872	0750h	AREAO range setting mode	0 : Range setting with absolute value 1: Offset/width setting from the target position	0	A
	1873	0751h	AREA1 range setting mode			
	1874	0752h	AREA2 range setting mode			
	1875	0753h	AREA3 range setting mode			
	1876	0754h	AREA4 range setting mode			
	1877	0755h	AREA5 range setting mode			
	1878	0756h	AREA6 range setting mode			
	1879	0757h	AREA7 range setting mode			

Parameter ID		Name	Setting range	Initial value	Update
Dec	Hex				
1880	0758h	AREA0 positioning standard	0 : Based on feedback position 1: Based on command position	0	A
1881	0759h	AREA1 positioning standard			
1882	075Ah	AREA2 positioning standard			
1883	075Bh	AREA3 positioning standard			
1884	075Ch	AREA4 positioning standard			
1885	075Dh	AREA5 positioning standard			
1886	075Eh	AREA6 positioning standard			
1887	075Fh	AREA7 positioning standard			
1888	0760h	D-SEL0 operation number selection	0 to 255: Operation data number	0	A
1889	0761h	D-SEL1 operation number selection		1	
1890	0762h	D-SEL2 operation number selection		2	
1891	0763h	D-SEL3 operation number selection		3	
1892	0764h	D-SEL4 operation number selection		4	
1893	0765h	D-SEL5 operation number selection		5	
1894	0766h	D-SEL6 operation number selection		6	
1895	0767h	D-SEL7 operation number selection		7	
1896	0768h	D-END0 operation number selection	0 to 255: Operation data number	0	A
1897	0769h	D-END1 operation number selection		1	
1898	076Ah	D-END2 operation number selection		2	
1899	076Bh	D-END3 operation number selection		3	
1900	076Ch	D-END4 operation number selection		4	
1901	076Dh	D-END5 operation number selection		5	
1902	076Eh	D-END6 operation number selection		6	
1903	076Fh	D-END7 operation number selection		7	
2554	09FAh	Current setting during motor standstill at T-MODE	0: Stop current 1: Operating current	0	A

8-13 Direct I/O setting parameters

Parameter ID		Name	Setting range	Initial value	Update
Dec	Hex				
2112	0840h	DINO input function	Input signals list \Rightarrow p. 96	5: STOP	C
2113	0841h	DIN1 input function		1: FREE	
2128	0850h	DINO inverting mode	0 : Not invert 1: Invert	0	C
2129	0851h	DIN1 inverting mode			
2176	0880h	DIN0 composite input function	Input signals list \Rightarrow p. 96	$0:$ No function	C
2177	0881h	DIN1 composite input function			
2240	08C0h	DINO ON signal dead-time	0 to 250 ms	0	C
2241	08C1h	DIN1 ON signal dead-time			
2256	08D0h	DINO 1 shot signal	0 : The 1 shot signal function is disabled 1 :The 1 shot signal function is enabled	0	C
2257	08D1h	DIN1 1 shot signal			

8-14 Remote I/O setting parameters

Parameter ID		Name	Setting range	Initial value	Update
Dec	Hex				
2304	0900h	R-IN0 input function	Input signals list \Rightarrow p. 96	0 : No function	C
2305	0901h	R-IN1 input function			
2306	0902h	R-IN2 input function			
2307	0903h	R-IN3 input function			
2308	0904h	R-IN4 input function			
2309	0905h	R-IN5 input function			
2310	0906h	R-IN6 input function			
2311	0907h	R-IN7 input function			
2312	0908h	R-IN8 input function			
2313	0909h	R-IN9 input function			
2314	090Ah	R-IN10 input function			
2315	090Bh	R-IN11 input function			
2316	090Ch	R-IN12 input function			
2317	090Dh	R-IN13 input function			
2318	090Eh	R-IN14 input function			
2319	090Fh	R-IN15 input function			
2320	0910h	R-OUT0 output function	Output signals list \Rightarrow p. 97	64: M0_R	C
2321	0911h	R-OUT1 output function		65: M1_R	
2322	0912h	R-OUT2 output function		66: M2_R	
2323	0913h	R-OUT3 output function		32: START_R	
2324	0914h	R-OUT4 output function		144: HOME-END	
2325	0915h	R-OUT5 output function		132: READY	
2326	0916h	R-OUT6 output function		135: INFO	
2327	0917h	R-OUT7 output function		129: ALM-A	
2328	0918h	R-OUT8 output function		136: SYS-BSY	
2329	0919h	R-OUT9 output function		160: AREA0	
2330	091Ah	R-OUT10 output function		161: AREA1	
2331	091Bh	R-OUT11 output function		162: AREA2	
2332	091Ch	R-OUT12 output function		157: TIM	

Parameter ID		Name	Setting range	Initial value	Update
Dec	Hex				
2333	091Dh	R-OUT13 output function	Output signals list \Rightarrow p. 97	134: MOVE	C
2334	091Eh	R-OUT14 output function		138: IN-POS	
2335	091Fh	R-OUT15 output function		140: TLC	
2352	0930h	R-OUT0 OFF delay time	0 to 250 ms	0	C
2353	0931h	R-OUT1 OFF delay time			
2354	0932h	R-OUT2 OFF delay time			
2355	0933h	R-OUT3 OFF delay time			
2356	0934h	R-OUT4 OFF delay time			
2357	0935h	R-OUT5 OFF delay time			
2358	0936h	R-OUT6 OFF delay time			
2359	0937h	R-OUT7 OFF delay time			
2360	0938h	R-OUT8 OFF delay time			
2361	0939h	R-OUT9 OFF delay time			
2362	093Ah	R-OUT10 OFF delay time			
2363	093Bh	R-OUT11 OFF delay time			
2364	093Ch	R-OUT12 OFF delay time			
2365	093Dh	R-OUT13 OFF delay time			
2366	093Eh	R-OUT14 OFF delay time			
2367	093Fh	R-OUT15 OFF delay time			

8-15 Virtual input parameters

Parameter ID		Name	Setting range	Initial value	Update
Dec	Hex				
2368	0940h	Virtual input (VIR-IN0) function	Input signals list$\Rightarrow p .96$	0 : No function	C
2369	0941h	Virtual input (VIR-IN1) function			
2370	0942h	Virtual input (VIR-IN2) function			
2371	0943h	Virtual input (VIR-IN3) function			
2372	0944h	Virtual input (VIR-INO) source selection	Output signals list \Rightarrow p. 97	128: CONST-OFF	C
2373	0945h	Virtual input (VIR-IN1) source selection			
2374	0946h	Virtual input (VIR-IN2) source selection			
2375	0947h	Virtual input (VIR-IN3) source selection			
2376	0948h	Virtual input (VIR-IN0) inverting mode	0 : Not invert 1: Invert	0	C
2377	0949h	Virtual input (VIR-IN1) inverting mode			
2378	094Ah	Virtual input (VIR-IN2) inverting mode			
2379	094Bh	Virtual input (VIR-IN3) inverting mode			
2380	094Ch	Virtual input (VIR-IN0) ON signal dead time	0 to 250 ms	0	C
2381	094Dh	Virtual input (VIR-IN1) ON signal dead time			
2382	094Eh	Virtual input (VIR-IN2) ON signal dead time			
2383	094Fh	Virtual input (VIR-IN3) ON signal dead time			
2384	0950h	Virtual input (VIR-IN0) 1 shot signal mode	0: Disable 1: Enable	0	C
2385	0951h	Virtual input (VIR-IN1) 1 shot signal mode			
2386	0952h	Virtual input (VIR-IN2) 1 shot signal mode			
2387	0953h	Virtual input (VIR-IN3) 1 shot signal mode			

8-16 User output setting parameters

Parameter ID		Name	Setting range	Initial value	Update
Dec	Hex				
2400	0960h	User output (USR-OUTO) source A function	Output signals list$\Rightarrow p .97$	128: CONST-OFF	C
2401	0961h	User output (USR-OUT1) source A function			
2402	0962h	User output (USR-OUTO) source A inverting mode	0 : Not invert 1: Invert	0	C
2403	0963h	User output (USR-OUT1) source A inverting mode			
2404	0964h	User output (USR-OUTO) source B function	Output signals list \Rightarrow p. 97	128: CONST-OFF	C
2405	0965h	User output (USR-OUT1) source B function			
2406	0966h	User output (USR-OUT0) source B inverting mode	0 : Not invert 1: Invert	0	C
2407	0967h	User output (USR-OUT1) source B inverting mode			
2408	0968h	User output (USR-OUT0) logical operation	$\begin{aligned} & \text { 0: AND } \\ & \text { 1: OR } \end{aligned}$	1	C
2409	0969h	User output (USR-OUT1) logical operation			

8-17 Driver mode setting parameters

Parameter ID		Name	Setting range	Initial value	Update
Dec	Hex		1	D	
498	01F2h	USB-ID enable	0: Disable 1: Enable	0	D
499	$01 F 3 h$	USB-ID	0 to $999,999,999$	0	D
2555	09FBh	USB-PID	0 to 31	0	0

8-18 EtherNet/IP communication setting parameters

- Assignable monitor setting parameters

Parameter ID		Name	Setting range	Initial value	Update
Dec	Hex				
25600	6400h	Assignable monitor address 0	Set from items of" 4 Parameter ID lists."	124: Driver temperature	A
25601	6401h	Assignable monitor address 1		125: Motor temperature	
25602	6402h	Assignable monitor address 2		109: Cumulative load monitor	
25603	6403h	Assignable monitor address 3		127: Tripmeter	

- IP address setting parameters

These are set using the MEXEO2 software. They cannot be read or written via Implicit communication.

| Parameter ID | | Name | Description | | Setting range | Initial value |
| :---: | :---: | :--- | :--- | :--- | :---: | :---: | Update

9 I/O signals assignment list

To assign signals via industrial network, use the "assignment numbers" in the table instead of the signal names.

Assignment number	Signal name
0	Not used
1	FREE
2	C-ON
3	CLR
4	STOP-COFF
5	STOP
6	PAUSE
7	BREAK-ATSQ
8	ALM-RST
9	P-PRESET
10	EL-PRST
13	LAT-CLR
14	INFO-CLR
16	HMI
18	CCM
21	T-MODE
22	CRNT-LMT
23	SPD-LMT
26	FW-BLK
27	RV-BLK
28	FW-LS
29	RV-LS
30	HOMES
31	SLIT
32	START

Assignment number	Signal name
33	SSTART
35	NEXT
36	HOME
37	ZHOME
40	D-SELO
41	D-SEL1
42	D-SEL2
43	D-SEL3
44	D-SEL4
45	D-SEL5
46	D-SEL6
47	D-SEL7
48	FW-JOG
49	RV-JOG
50	FW-JOG-H
51	RV-JOG-H
52	FW-JOG-P
53	RV-JOG-P
54	FW-JOG-C
55	RV-JOG-C
56	FW-POS
57	RV-POS
58	FW-SPD
59	RV-SPD
60	FW-PSH

Assignment number	Signal name
61	RV-PSH
64	M0
65	M1
66	M2
67	M3
68	M4
69	M5
70	M6
71	M7
75	TEACH
80	R0
81	R1
82	R2
83	R3
84	R4
85	R5
86	R6
87	R7
88	R8
89	R9
90	R10
91	R11
92	R12
93	R13
94	R14
95	R15

9-2 Output signals

Assignment number	Signal name
0	Not used
1	FREE_R
2	C-ON_R
3	CLR_R
4	STOP-COFF_R
5	STOP_R
6	PAUSE_R
7	BREAK-ATSQ_R
8	ALM-RST_R
9	P-PRESET_R
10	EL-PRST_R
13	LAT-CLR_R
14	INFO-CLR_R
16	HMI_R
18	CCM_R
21	T-MODE_R
22	CRNT-LMT_R
23	SPD-LMT_R
26	FW-BLK_R
27	RV-BLK_R
28	FW-LS_R
29	RV-LS_R
30	HOMES_R
31	SLIT_R
32	START_R
33	SSTART_R
35	NEXT_R
36	HOME_R
37	ZHOME_R
40	D-SELO_R
41	D-SEL1_R
42	D-SEL2_R
43	D-SEL3_R
44	D-SEL4_R
45	D-SEL5_R
46	D-SEL6_R
47	D-SEL7_R
48	FW-JOG_R
49	RV-JOG_R
50	FW-JOG-H_R
51	RV-JOG-H_R
52	FW-JOG-P_R
53	RV-JOG-P_R
54	FW-JOG-C_R
55	RV-JOG-C_R

Assignment number	Signal name
56	FW-POS_R
57	RV-POS_R
58	FW-SPD_R
59	RV-SPD_R
60	FW-PSH_R
61	RV-PSH_R
64	M0_R
65	M1_R
66	M2_R
67	M3_R
68	M4_R
69	M5_R
70	M6_R
71	M7_R
75	TEACH_R
80	Ro_R
81	R1_R
82	R2_R
83	R3_R
84	R4_R
85	R5_R
86	R6_R
87	R7_R
88	R8_R
89	R9_R
90	R10_R
91	R11_R
92	R12_R
93	R13_R
94	R14_R
95	R15_R
128	CONST-OFF
129	ALM-A
130	ALM-B
131	SYS-RDY
132	READY
134	MOVE
135	INFO
136	SYS-BSY
138	IN-POS
140	TLC
141	VA
142	CRNT
143	AUTO-CD
144	HOME-END

Assignment number	Signal name
145	ABSPEN
146	ELPRST-MON
149	PRST-DIS
150	PRST-STLD
151	ORGN-STLD
152	RND-OVF
153	FW-SLS
154	RV-SLS
155	ZSG
156	RND-ZERO
157	TIM
159	MAREA
160	AREAO
161	AREA1
162	AREA2
163	AREA3
164	AREA4
165	AREA5
166	AREA6
167	AREA7
168	MPS
169	MBC
180	USR-OUTO
181	USR-OUT1
192	CRNT-LMTD
193	SPD-LMTD
196	OPE-BSY
197	PAUSE-BSY
198	SEQ-BSY
199	DELAY-BSY
200	JUMPO-LAT
201	JUMP1-LAT
202	NEXT-LAT
204	DCMD-RDY
205	DCMD-FULL
207	M-CHG
208	M-ACTO
209	M-ACT1
210	M-ACT2
211	M-ACT3
212	M-ACT4
213	M-ACT5
214	M-ACT6
215	M-ACT7
216	D-END0

Assignment number	Signal name		Assignment number	Signal name
217	D-END1		233	INFO-START
218	D-END2		234	INFO-ZHOME
219	D-END3		235	INFO-PR-REQ
220	D-END4		237	INFO-EGR-E
221	D-END5		238	INFO-RND-E
222	D-END6		240	INFO-FW-OT
223	D-END7		241	INFO-RV-OT
224	INFO-USRIO		242	INFO-CULDO
225	INFO-POSERR		243	INFO-CULD1
226	INFO-DRVTMP		244	INFO-TRIP
227	INFO-MTRTMP		245	INFO-ODO
228	INFO-OVOLT		252	INFO-DSLMTD
229	INFO-UVOLT		253	INFO-IOTEST
230	INFO-OLTIME		254	INFO-CFG
232	INFO-SPD			
		255	INFO-RBT	

Table of contents

1 Detection of communication errors 100
1-1 Communication timeout 100
1-2 IP address conflict 100
2 Alarms 101
2-1 Alarm reset 101
2-2 Alarm history 101
2-3 Generation condition of alarms 101
2-4 Alarm list 102
2-5 Timing chart 107
3 Information. 109
3-1 Information history 112
3-2 Information list 112
4 Troubleshooting and remedial actions 115

1 Detection of communication errors

This chapter explains a function to detect that an error occurred in EtherNet／IP．

1－1 Communication timeout

If Implicit communication is interrupted due to disconnection of the EtherNet／IP cable or other reasons，the communication timeout is detected．
When the communication timeout is detected，the NS LED on the driver blinks in red．
When connection with the scanner is established again，the communication timeout is automatically cleared，and the NS LED on the driver returns to be lit in green．
If the communication timeout is detected，check the following points．
－Is the EtherNet／IP cable disconnected？
－Is the power supply for the scanner is turned on？

1－2 IP address conflict

If an IP address of the EtherNet／IP compatible products is duplicated in the same system，the IP address conflict is detected．
When the IP address conflict is detected，the NS LED on the driver is lit in red．
If the IP address conflict is detected，change the setting so that an IP address of the EtherNet／IP compatible products is not duplicated．
Check the IP address is not duplicated，and then turn on the control power supply again．

2 Alarms

This driver has the alarm function to protect from temperature rise, poor connection, error in operation, and the like. If an alarm is generated, the ALM-A output is turned ON and the ALM-B output is turned OFF to stop the motor. At the same time, the PWR/ALM LED blinks in red.
Details of the alarm being generated can be checked by counting the number of times the PWR/ALM LED blinks, or using EtherNet/IP or the MEXEO2 software.

2-1 Alarm reset

Before resetting an alarm, always remove the cause of the alarm and ensure safety, and perform one of the reset operations specified below.

- Turn the ALM-RST input ON. (It is enabled at the ON edge of the input.)
- Execute the alarm reset with the maintenance command via EtherNet/IP.
- Execute the alarm reset using the MEXEO2 software.
- Turn off the main power supply and the control power supply, and on again.

Note - Some alarms cannot be reset by other methods than turning on the main power supply and control power supply again. Refer to "2-4 Alarm list" on p.102.

- An alarm of the absolute position error can be reset if the position preset or return-to-home operation is performed. If it cannot be reset by these methods, the ABZO sensor may be damaged.

2-2 Alarm history

Up to 10 generated alarm items are stored in the non-volatile memory in order of the latest to the oldest. The alarm history stored in the non-volatile memory can be read or cleared if one of the following reset operations is performed.

- Read the alarm history by the monitor command via EtherNet/IP.
- Clear the alarm history by the maintenance command via EtherNet/IP.
- Read or clear the alarm history using the MEXEO2 software.

2-3 Generation condition of alarms

Alarms shown in the table will be generated if the generation condition is exceeded.

Alarm code	Alarm name	Motor model	Generation condition
21 h	Main circuit overheat	-	$85^{\circ} \mathrm{C}\left(185^{\circ} \mathrm{F}\right)$
22 h	Overvoltage	-	$36 \mathrm{~V} * 1$ $63 \mathrm{~V} * 2$
26 h		-	$85^{\circ} \mathrm{C}\left(185^{\circ} \mathrm{F}\right)$
31 h	Overspeed	AZM14, AZM15, AZM24, AZM26	$8,000 \mathrm{r} / \mathrm{min}$
		AZM46, AZM48, AZM66	$4,500 \mathrm{r} / \mathrm{min}$
		AZM69	$2,500 \mathrm{r} / \mathrm{min}$
34 h	Command pulse error	-	$38,400 \mathrm{r} / \mathrm{min}$

[^2]
2-4 Alarm list

	Alarm code	Number of times LED blinks	Alarm type	Cause	Remedial action	How to reset	Motor excitation *
	10h	4	Excessive position deviation	- When the motor was in a state of current ON, the deviation between the command position and the feedback position exceeded the value set in the "Excessive position deviation alarm" parameter in the motor shaft. - A load is large, or the acceleration/deceleration time or the acceleration/ deceleration rate is too short against the load. - The operating range of positioning push-motion SD operation was exceeded.	- Decrease the load. - Increase the acceleration/ deceleration time or slow the acceleration/deceleration rate. - increase the operating current. - Reconsider the operation data.	Any of reset operations	Nonexcitation
	20h	5	Overcurrent	The motor, the cable, and the driver output circuit were short-circuited.	Turn off the main power supply and the control power supply first, and check that the motor, the cable, and the driver are not damaged. After that, turn on the main power supply and the control power supply again. If the alarm is still not reset, the motor, the cable, or the driver may be damaged. Contact your nearest Oriental Motor sales office.	Turn on the main power supply and control power supply again	Nonexcitation
	21h	2	Main circuit overheat	The internal temperature of the driver reached the upper limit of the specification value.	Reconsider the ventilation condition.	Any of reset operations	Nonexcitation
	22h	3	Overvoltage	- The main power supply voltage exceeded the permissible value. - A large load inertia was suddenly stopped. - Vertical operation (elevating operation) was performed.	- Check the input voltage of the main power supply. - Decrease the load. - Increase the acceleration/ deceleration time or slow the acceleration/deceleration rate.	Any of reset operations	Nonexcitation
$\stackrel{\rightharpoonup}{\mathrm{O}} \mathrm{I}$	23h	3	Main power supply OFF	The main power supply was shut off during operation.	Check if the main power supply is properly supplied.	Any of reset operations	Nonexcitation
¢	25h	3	Undervoltage	The main power supply was shut off momentarily or the voltage became low.	Check the input voltage of the main power supply.	Any of reset operations	Nonexcitation
	26h	8	Motor overheat	The detection temperature of the ABZO sensor reached the upper limit of the specification value.	- Check the heat radiation condition of the motor. - Reconsider the ventilation condition.	Any of reset operations	Nonexcitation
	28h	8	Sensor error	An error of the ABZO sensor was detected during operation.	Turn off the main power supply and the control power supply, and check the connection of the motor. After that, turn on the main power supply and the control power supply again.	Turn on the main power supply and control power supply again	Nonexcitation

| Alarm |
| :---: | :---: | :--- | :--- | :--- | :--- | :--- |
| code | | Number of
 times LED
 blinks |
| :--- |
| Alarm type |

Alarm code	Number of times LED blinks	Alarm type	Cause	Remedial action	How to reset	Motor excitation *
44h	8	Encoder EEPROM error	The data stored in the ABZO sensor was damaged.	Execute either of the following operations. If the same alarm is still generated, the ABZO sensor has been damaged. Contact your nearest Oriental Motor sales office. - Set phase Z again with the"ZSGPRESET" of the maintenance command. - Execute the "Clear tripmeter" of the maintenance command.	Turn on the main power supply and control power supply again	Nonexcitation
45h	8	Motor combination error	A motor not allowed to combine with the driver was connected. (Refer to p. 106 for details.)	Check the motor model and the driver model, and connect them in a correct combination.	Turn on the main power supply and control power supply again	Nonexcitation
4Ah	7	Return-to-home incomplete	Absolute positioning operation was started in a state where the coordinates had not been set.	Execute the position preset or return-to-home operation.	Any of reset operations	Excitation
60h	7	$\pm \mathrm{LS}$ both sides active	- When the "FW-LS/RV-LS input action" parameter is set to " 2 : Immediate stop with alarm" or"3: Deceleration stop with alarm," both the FW-LS input and the RV-LS input were detected. - Return-to-home operation was executed in a state where both the FW-LS input and the RV-LS input were detected.	Check the sensor logic installed and the "Inverting mode" parameter.	Any of reset operations	Excitation
61h	7	Reverse \pm LS connection	The LS input opposite to the operating direction was detected while return-to-home operation in the 2 -sensor mode or the 3 -sensor mode was performed.	Check the wiring of the sensor.	Any of reset operations	Excitation
62h	7	Return-to-home operation error	- An unanticipated load was applied while return-to-home operation was performed. - The installation positions of the FW-LS and RV-LS sensors and the HOME sensor are near to each other. - Position preset processing upon completion of return-to-home operation was failed. - In return-to-home operation in the one-way rotation mode, the HOME sensor was exceeded while the motor decelerated to a stop.	- Check the load. - Reconsider the sensor installation positions and the starting direction of motor operation. - See that a load exceeding the maximum torque is not applied upon completion of return-tohome operation. - Reconsider the specifications of the HOME sensor and the "(HOME) Acceleration/ deceleration" parameter.	Any of reset operations	Excitation
63h	7	No HOMES	The HOMES input was not detected at a position between the FW-LS input and the RV-LS input while return-to-home operation in the 3 -sensor mode was performed.	Install the HOME sensor at a position between the FW-LS and RV-LS sensors.	Any of reset operations	Excitation

Alarm code	Number of times LED blinks	Alarm type	Cause	Remedial action	How to reset	Motor excitation *
64h	7	TIM, ZSG, SLIT signal error	None of the TIM output, the ZSG output, or the SLIT input could be detected during return-to-home operation.	- Reconsider the connection status of the load and the position of the HOME sensor so that these signals should be ON while the HOMES input is ON. - When a signal is not used, set the "(HOME) TIM/ZSG signal detection" parameter or the "(HOME) SLIT detection" parameter to "0: Disable."	Any of reset operations	Excitation
66h	7	Hardware overtravel	When the "FW-LS/RV-LS input action" parameter is set to" 2 : Immediate stop with alarm" or "3: Deceleration stop with alarm," the FW-LS input or the RV-LS input was detected.	Reset the alarm and then escape from the sensor by operating the motor or manually.	Any of reset operations	Excitation
67h	7	Software overtravel	When the "Software overtravel" parameter is set to" 2 : Immediate stop with alarm" or "3: Deceleration stop with alarm," the motor position reached the set value of the software limit.	- Reconsider the operation data. - Reset the alarm and then escape from the sensor by operating the motor or manually.	Any of reset operations	Excitation
6Ah	7	Return-to-home operation offset error	When offset movement as part of return-to-home operation was performed, the FW-LS input or the RV-LS input was detected.	Check the offset value.	Any of reset operations	Excitation
6Dh	7	Mechanical overtravel	The product having set the home reached the mechanism limit stored in the ABZO sensor.	- Check the travel amount (position). - Reset the alarm and then escape from the sensor by operating the motor or manually.	Any of reset operations	Excitation
70h	7	Operation data error	- Stored data operation was performed with data whose operating speed was 0 . - Operation was performed at the operating speed or operating current exceeding the value set in the "Mechanism protection parameter". - Wrap operation was executed when wrap setting was disabled. - Push-motion operation or push-motion return-to-home operation was performed with the DGII Series.	- Check the operation data. - Check the value set in the "Mechanism protection parameter" using the unit information monitor of the MEXE02 software. - Check the wrap setting. - Push-motion operation as well as push-motion return-to-home operation cannot be performed with the DGII Series.	Any of reset operations	Excitation
71h	7	Electronic gear setting error	The resolution set in the "Electronic gear A" parameter and "Electronic gear B" parameter were out of the specifications.	Reconsider the "Electronic gear A" parameter and "Electronic gear B" parameter, and set so that the resolution should be in the range of the specifications.	Turn on the main power supply and control power supply again	Nonexcitation
72h	7	Wrap setting error	The control power supply was turned on in a state where the resolution and the value set in the "Initial coordinate generation \& wrap setting range" parameter were inconsistent.	Set the "Initial coordinate generation \& wrap setting range" parameter properly, and turn on the main power supply and the control power supply again.	Turn on the main power supply and control power supply again	Nonexcitation

Alarm code	Number of times LED blinks	Alarm type	Cause	Remedial action	How to reset	Motor excitation*
81 h	7	Network bus error	Implicit communication of Exclusive Owner connection was disconnected during operation.	Check the connection with the scanner and the condition of the power supply of the scanner.	Any of reset operations	Excitation
82 h	7	Network module error	An error was detected in the network module.	Turn on the main power supply and the control power supply again.	Turn on the main power supply and control power supply again	Non- excitation
FOh	Light	CPU error	CPU malfunctioned.	Turn on the main power supply and the control power supply again.	Turn on the main power supply and control power supply again	Non- excitation

* An excitation state of the motor when an alarm is generated is as follows.

Non-excitation: If an alarm is generated, the motor current is cut off and the motor holding force is lost. When an electromagnetic brake motor is used, the electromagnetic brake is in a state of holding the motor shaft.
Excitation: Even if an alarm is generated, the motor current is not cut off and the motor position is held.
Related parameters

Parameter ID		Parameter name	Description	Initial value
Dec	Hex		Sets the condition in which the overload alarm is generated. [Setting range] 1 to $300(1=0.1 \mathrm{~s})$	50
384	0180 h	Overload alarm	Sets the condition in which the excessive position deviation alarm is generated. [Setting range] 1 to 30,000 (1=0.01 rev)	
24968	6188 Excessive position deviation	Network bus error alarm	Sets the function of the network bus error alarm. [Setting range] $0:$ Disable $1:$ Enable	300

- About causes of the motor combination error (alarm code 45h)

An alarm of the motor combination error is generated in the following conditions.

- When a motor for the AC power supply was connected to the driver.
- When a motor of frame size 20 mm (0.79 in .) or 28 mm (1.10 in .) was connected to the driver and 48 VDC was applied.

2-5 Timing chart

When the motor remains in an excitation state even if an alarm is generated

1. If an error occurs, the ALM-B output and the MOVE output are turned OFF. At the same time, the motor stops instantaneously.
2. When resetting the alarm, turn the operation command OFF, If the alarm is reset while the operation command is input, the motor may start suddenly, causing injury or damage to equipment.
3. Remove the cause of the alarm before turning the ALM-RST input ON. The alarm is reset, and the ALM-B output and the READY output are turned ON.
4. Check the ALM-B output has been turned ON and then turn the ALM-RST input OFF.

When the motor puts into a non-excitation state if an alarm is generated

1. If an error occurs, the ALM-B output and the MOVE output are turned OFF. At the same time, the motor stops instantaneously.
2. When resetting the alarm, turn the operation command OFF, If the alarm is reset while the operation command is input, the motor may start suddenly, causing injury or damage to equipment.
3. Remove the cause of the alarm before turning the ALM-RST input ON.

The alarm is reset, and the ALM-B output and the READY output are turned ON.
4. Check the ALM-B output has been turned ON and then turn the ALM-RST input OFF.

3 Information

The driver is equipped with a function to generate information output before an alarm is generated.
This function can be utilized for periodic maintenance of equipment by setting a suitable value in the parameter of each information.
For example, utilizing the "Motor temperature information" parameter can prevent equipment malfunction or production stoppage due to motor overheat. In addition, the "Tripmeter information" parameter can be utilized as a reference to do maintenances every time a certain travel distance is reached.

- Status when information is generated

- Information bit output

If information is generated, a bit output (INFO-** output) of the corresponding information is turned ON.
A desired output signal can be assigned to the INFO-USRIO output among bit outputs and used. If the assigned output signal is turned ON, the INFO-USRIO output is also turned ON. (Details of bit output $\Rightarrow \mathrm{p} .112$)

- INFO output

If information is generated, the INFO output is turned ON.

- LED indicator

If information is generated, the PWR/ALM LED blinks in blue.

- Operation of motor

The motor continues to operate during information unlike in the case of an alarm.

- Parameter

Each information has a corresponding "INFO action" parameter. If the parameter is set to " 0 : No Info reflect," only the bit output of information is turned ON, and the INFO output and LED are not changed.

Related parameters

Parameter ID		Parameter name	Description	Initial value
Dec	Hex			
416	01A0h	Driver temperature information (INFO-DRVTMP)	Sets the condition in which the driver temperature information (INFO-DRVTMP) is generated. [Setting range] 40 to $85^{\circ} \mathrm{C}$	85
417	01A1h	Overload time information (INFOOLTIME)	Sets the condition in which the overload time information (INFO-OLTIME) is generated. [Setting range] 1 to 300 ($1=0.1$ s)	50
418	01A2h	Speed information (INFO-SPD)	Sets the condition in which the speed information (INFO-SPD) is generated. [Setting range] 0 : Disable 1 to $12,000 \mathrm{r} / \mathrm{min}$	0
421	01A5h	Position deviation information (INFO-POSERR)	Sets the condition in which the position deviation information (INFO-POSERR) is generated. [Setting range] 1 to 30,000 (1=0.01 rev)	300
424	01A8h	Motor temperature information (INFO-MTRTMP)	Sets the condition in which the motor temperature information (INFO-MTRTMP) is generated. [Setting range] 40 to $120^{\circ} \mathrm{C}$	85
427	01ABh	Overvoltage information (INFOOVOLT)	Sets the condition in which the overvoltage information (INFO-OVOLT) is generated. [Setting range] $140 \text { to } 630(1=0.1 \mathrm{~V})$	630

	Parameter ID		Parameter name	Description	Initial value
	Dec	Hex			
	428	01ACh	Undervoltage information (INFOUVOLT)	Sets the condition in which the undervoltage information (INFO-UVOLT) is generated. [Setting range] $140 \text { to } 630(1=0.1 \mathrm{~V})$	140
	431	01AFh	Tripmeter information (INFO-TRIP)	Sets the condition in which the tripmeter information (INFO-TRIP) is generated. [Setting range] 0 : Disable 1 to $2,147,483,647$ ($1=0.1 \mathrm{kRev}$)	0
	432	01B0h	Odometer information (INFO-ODO)	Sets the condition in which the odometer information (INFO-ODO) is generated. [Setting range] 0 : Disable 1 to $2,147,483,647$ ($1=0.1 \mathrm{kRev}$)	0
	433	01B1h	Cumulative load 0 information (INFO-CULDO)	Sets the condition in which the cumulative load 0 information (INFO-CULDO) is generated. [Setting range] 0 to 2,147,483,647	0
	434	01B2h	Cumulative load 1 information (INFO-CULD1)	Sets the condition in which the cumulative load 1 information (INFO-CULD1) is generated. [Setting range] 0 to $2,147,483,647$	0
	435	01B3h	Cumulative load value auto clear	Clears the cumulative load when operation is started (at the ON edge of the MOVE output). [Setting range] 0 : Not clear 1: Clear	1
G-70$\frac{0}{0}$$\frac{0}{0}$00000	436	01B4h	Cumulative load value count divisor	Sets the divisor of the cumulative load. [Setting range] 1 to 32,767	1
	444	01BCh	INFO-USRIO output selection	Selects the output signal to be checked in the INFO-USRIO output. [Setting range] Output signal \Rightarrow p. 97	128: CONSTOFF
	445	01BDh	INFO-USRIO output inversion	Sets the output logic of the INFO-USRIO output. [Setting range] 0 : Not invert 1: Invert	0
	446	01BEh	Information LED condition	Sets the LED status when information is generated. [Setting range] 0: Disable (LED does not blink) 1: Enable (LED blinks)	1
	447	01BFh	Information auto clear	When the cause of information is eliminated, the INFO output and the bit output of the corresponding information are turned OFF automatically. [Setting range] 0 : Disable (not turned OFF automatically) 1: Enable (turned OFF automatically)	1

Parameter ID		Parameter name	Description	Initial value
Dec	Hex			
1952	07A0h	INFO action (Assigned I/O status information (INFO-USRIO))	Sets the bit output, the INFO output, and the LED status when information is generated. [Setting range] 0 : No info reflect (Only the bit output is ON.) 1: Info reflect (The bit output and the INFO output are ON and the LED blinks.)	1
1953	07A1h	INFO action (Position deviation information (INFO-POSERR))		
1954	07A2h	INFO action (Driver temperature information (INFO-DRVTMP))		
1955	07A3h	INFO action (Motor temperature information (INFO-MTRTMP))		
1956	07A4h	INFO action (Overvoltage information (INFO-OVOLT))		
1957	07A5h	INFO action (Undervoltage information (INFO-UVOLT))		
1958	07A6h	INFO action (Overload time information (INFO-OLTIME))		
1960	07A8h	INFO action (Speed information (INFO-SPD))		
1961	07A9h	INFO action (Start operation error information (INFO-START))		
1962	07AAh	INFO action (Start ZHOME error information (INFO-ZHOME))		
1963	07ABh	INFO action (PRESET request information (INFO-PR-REQ))		
1965	07ADh	INFO action (Electronic gear setting error information (INFO-EGR-E))		
1966	07AEh	INFO action (Wrap setting error information (INFO-RND-E))		
1968	07B0h	INFO action (Forward operation prohibition information (INFO-FWOT))		
1969	07B1h	INFO action (Reverse operation prohibition information (INFO-RVOT))		
1970	07B2h	INFO action (Cumulative load 0 information (INFO-CULDO))		
1971	07B3h	INFO action (Cumulative load 1 information (INFO-CULD1))		
1972	07B4h	INFO action (Tripmeter information (INFO-TRIP))		
1973	07B5h	INFO action (Odometer information (INFO-ODO))		
1980	07BCh	INFO action (Start operation restricted mode information (INFO-DSLMTD))		
1981	07BDh	INFO action (I/O test mode information (INFO-IOTEST))		
1982	07BEh	INFO action (Configuration request information (INFO-CFG))		
1983	07BFh	INFO action (Reboot request information (INFO-RBT))		

3-1 Information history

Up to 16 generated information items are stored in the RAM in order of the latest to the oldest. Information items stored as the information history are the information code, generation time, and contents of information. The information history stored in the RAM can be read or cleared if one of the following is performed.

- Read the information history by the monitor command via EtherNet/IP.
- Clear the information history by the maintenance command via EtherNet/IP.
- Read or clear the information history using the MEXE02 software.
memo Information history is cleared when the main power supply and control power supply of the driver are turned off because it is stored in the RAM.

3-2 Information list

Information item	Information bit output signal	Cause	Reset condition
Assigned I/O status	INFO-USRIO	The I/O signal set in the "INFO-USRIO output selection" parameter was turned ON.	The I/O signal set in the"INFO- USRIO output selection" parameter was turned OFF.
Position deviation	INFO-POSERR	The deviation between the command position and the feedback position exceeded the value set in the "Position deviation information" parameter in the motor output shaft.	The deviation between the command position and the feedback position fell below the value set in the "Position deviation information" parameter in the motor output shaft.
Driver temperature	INFO-DRVTMP	The internal temperature of the driver exceeded the value set in the "Driver temperature information" parameter.	The internal temperature of the driver fell below the value set in the
"Driver temperature information"			
parameter.			

Information item	Information bit output signal	Cause	Reset condition
Start operation error	INFO-START	- The operation start signal in the direction having been stopped by the FW-BLK input or RV-BLK input was turned ON. - The operation start signal in the direction having been stopped by the FW-LS input or RV-LS input was turned ON. - The operation start signal in the direction having been stopped by the software limit was turned ON. - When operation could not be executed (e.g., the READY output was OFF), the operation start signal was turned ON.	Operation was started properly.
Start ZHOME error	INFO-ZHOME	- When the coordinates were not set (the ABSPEN output was OFF), the ZHOME input was turned ON. - When the motor was used with the electrical home coordinate system (the EL-PRST input was ON), return-to-home operation was performed.	Operation was started properly.
Preset request	INFO-PR-REQ	Preset was executed by the position preset or return-to-home operation.	Preset was completed.
Electronic gear setting error	INFO-EGR-E	The resolution set in the "Electronic gear A" parameter and "Electronic gear B" parameter was out of the specifications.	The resolution was set in the range of the specifications.
Wrap setting error	INFO-RND-E	The resolution and the "Initial coordinate generation \& wrap setting range" parameter were inconsistent.	The "Initial coordinate generation \& wrap setting range" parameter was set in the range of the specifications.
Forward operation prohibition	INFO-FW-OT	- The positive software limit was exceeded. - Either the FW-LS input or the FW-BLK input was turned ON.	The position of the motor was in the range of the positive software limit, and in addition, both the FW-LS input and the FW-BLK input were turned OFF.
Reverse operation prohibition	INFO-RV-OT	- The negative software limit was exceeded. - Either the RV-LS input or the RV-BLK input was turned ON.	The position of the motor was in the range of the negative software limit, and in addition, both the RV-LS input and the RV-BLK input were turned OFF.
Cumulative load 0	INFO-CULD0	The cumulative load exceeded the value set in the "Cumulative load 0 information" parameter.	The cumulative load fell below the value set in the "Cumulative load 0 information" parameter.
Cumulative load 1	INFO-CULD1	The cumulative load exceeded the value set in the "Cumulative load 1 information" parameter.	The cumulative load fell below the value set in the "Cumulative load 1 information" parameter.
Tripmeter	INFO-TRIP	The travel distance of the motor exceeded the value set in the "Tripmeter information" parameter.	After one of the following operations was performed, the travel distance (Tripmeter) of the motor fell below the value set in the "Tripmeter information" parameter. - The "Tripmeter information" parameter was set again. - The "Clear tripmeter" of the maintenance command was executed.

Information item	Information bit output signal	Cause	Reset condition
Odometer	INFO-ODO	The cumulative travel distance of the motor exceeded the value set in the "Odometer information" parameter.	After the following operation was performed, the cumulative travel distance (Odometer) of the motor fell below the value set in the "Odometer information" parameter. The "Odometer information" parameter was set again.
Start operation restricted mode	INFO-DSLMTD	- "Teaching, remote operation" was executed using the MEXEO2 software. - Configuration was executed. - Data was written to the driver from the MEXEO2 software. - "Restored to the factory setting" was executed using the MEXEO2 software.	- Teaching, remote operation was released. - Configuration was completed. - Writing data was completed. - Data was restored to the factory setting.
I/O test mode	INFO-IOTEST	- "I/O test" was executed with the MEXEO2 software. - Configuration was executed.	- The I/O test mode was canceled. - Configuration was completed.
Configuration request	INFO-CFG	The parameter that required executing the configuration was changed.	Configuration was executed.
Reboot request	INFO-RBT	The parameter that required rebooting was changed.	Reboot was executed.

memo If the "Preset request" information was generated for 100 ms or more in a state where the "Information auto clear" parameter was set to disable, the preset may have been failed. There are the following two possible reasons that the preset was failed.

- The ABZO sensor is not connected to the driver.
-The preset was executed in a state where the position deviation between the command position and the feedback position was 1.8° or more.

4 Troubleshooting and remedial actions

In motor operation, the motor or the driver may not operate properly due to an improper setting or wrong connection.
When the motor operation cannot be performed properly, refer to the contents provided in this chapter and take an appropriate remedial action.
If the problem persists, contact your nearest Oriental Motor sales office.

Phenomenon	Possible cause	Remedial action
- The motor is not excited. - The motor output shaft can be rotated by hand.	Connection error of the motor cable	Check the motor connection.
	The FREE input is being ON.	Turn the FREE input OFF.
The motor has a holding torque even if it puts into a nonexcitation state.	Effect of dynamic brake.	If the motor puts into a non-excitation state, the motor windings are brought into a state of being shortcircuited inside the driver, generating a larger holding torque than when no current is supplied (dynamic brake). To release the dynamic brake, shut off the main power supply and control power supply or turn the FREE input ON.
The motor does not rotate.	When an electromagnetic brake motor is used, the electromagnetic brake is in a holding state.	- Check the connection of the electromagnetic brake. - Check the input voltage of the control power supply.
	The position (travel amount) is not set in the operation data when positioning operation is performed.	Check the operation data.
	When JOG operation, high-speed JOG operation, or continuous macro operation is performed, the input in the forward direction and that in the reverse direction are simultaneously ON.	Turn both inputs in the forward direction and the reverse direction OFF, and then turn either one ON.
	The STOP input is being ON.	Turn the STOP input OFF.
The motor rotates in the direction opposite to the specified direction.	The "Motor rotation direction" parameter is set wrongly.	Check the setting of the "Motor rotation direction" parameter.
The gearhead output shaft rotates in the direction opposite to the motor.	A geared motor that rotates in the direction opposite to the motor output shaft is used.	- With the TS geared type, the gearhead output shaft rotates in the direction opposite to the motor when the gear ratio is 20 or 30 . - With the Harmonic geared type, the gearhead output shaft always rotates in the direction opposite to the motor.
Motor operation is unstable.	Connection error of the motor cable or power supply cable.	Check the connections between the driver, motor and power supply.
	A value set in the "Base current" parameter is too low.	Check the setting of the "Base current" parameter. If the motor current value is low with respect to a load, the torque will also be low and the operation will be unstable.
	The "Main power mode" parameter is set wrongly.	Check the setting of the "Main power mode" parameter.
	The main power supply starts up slowly or the voltage of the main power supply is unstable.	Set the "Main power mode" parameter to "0: 24 VDC" or " $1: 48 \mathrm{VDC}$ " according to the rated voltage of the main power supply.

Phenomenon	Possible cause	Remedial action
	The load is small.	Lower the current with the "Base current" parameter. If the motor output torque is too large with respect to a load, vibration will increase.
Motor vibration is too large.	The "Main power mode" parameter is set wrongly.	Check the setting of the "Main power mode" parameter.
	The main power supply starts up slowly or the voltage of the main power supply is unstable.	Set the "Main power mode" parameter to "0: 24 VDC" or "1:48 VDC" according to the rated voltage of the main power supply.
The electromagnetic brake is not put into a state of releasing the motor shaft.	The power is not supplied to the electromagnetic brake.	Check the connection of the electromagnetic brake.
	A voltage for the electromagnetic brake is insufficient.	Check the input voltage of the control power supply.

memo Check the alarm message using EtherNet/IP or the MEXEO2 when the alarm is being generated.

6 Reference materials

- Table of contents

1 Timing chart 118
2 Specifications 120
2-1 Product specifications............................ 120
2-2 General specifications.............................. 120
3 Regulations and standards................ 121

1 Timing chart

Power activation

- When a control power supply is used

- When a control power supply is not used

2 Specifications

2-1 Product specifications

Main power supply	Rated voltage	$\begin{aligned} & 24 \mathrm{VDC} \pm 5 \% \\ & 48 \mathrm{VDC} \pm 5 \% \end{aligned}$
	Input current	0.4 to 3.7 A *1
	Allowable operating voltage	24 VDC input: 20 to 32 VDC (22.8 to 32 VDC) *2 48 VDC input: 40 to 55 VDC
Control power supply	Rated voltage	$\begin{aligned} & 24 \mathrm{VDC} \pm 5 \% \\ & 48 \mathrm{VDC} \pm 5 \% \end{aligned}$
	Input current	0.15 A (0.4 A) *3
	Allowable operating voltage	24 VDC input: 20 to 32 VDC (22.8 to 32 VDC) *2 48 VDC input: 40 to 55 VDC
Interface	Control input	20 to 32 VDC Number of input points: 2, photocoupler
	Field network	EtherNet/IP

*1 The input current varies depending on the motor combined. Check on p. 25 .
*2 The value in parentheses () is the one when the electromagnetic brake motor is connected.
*3 The value in parentheses () is the one when the electromagnetic brake motor is connected. The AZM46 type is 0.23 A .

2-2 General specifications

Degree of protection		IP20
Operating environment	Ambient temperature	0 to $+50^{\circ} \mathrm{C}\left[+32\right.$ to $\left.+122^{\circ} \mathrm{F}\right]$ (non-freezing)
	Humidity	85% or less (non-condensing)
	Altitude	Up to $1,000 \mathrm{~m}(3,300 \mathrm{ft}$.) above sea level
	No corrosive gas, dust, water or oil	
Storage environment Shipping environment	Ambient temperature	-25 to $+70^{\circ} \mathrm{C}\left[-13\right.$ to $\left.158{ }^{\circ} \mathrm{F}\right]$ (non-freezing)
	Humidity	85% or less (non-condensing)
	Altitude	Up to $3,000 \mathrm{~m}(10,000 \mathrm{ft}$) above sea level
	Surrounding atmosphere	No corrosive gas, dust, water or oil

3 Regulations and standards

- UL Standards, CSA Standards

This product is recognized by UL under the UL and CSA Standards.
Check the" APPENDIX UL Standards for AZ Series" for recognition information about UL Standards.
■ CE Marking / UKCA Marking
This product is affixed with the marks under the following directives/regulations.

- EU EMC Directive / UK EMC Regulation

Refer to "4-7 Conformity to EMC Directive/Regulations" on p. 28 for details about conformity.

- EU RoHS Directive/UK RoHS Regulation

This product does not contain the substances exceeding the restriction values.

- Republic of Korea, Radio Waves Act

This product is affixed with the KC Mark under the Radio Waves Act, the Republic of Korea.

- Unauthorized reproduction or copying of all or part of this manual is prohibited.

If a new copy is required to replace an original manual that has been damaged or lost, please contact your nearest Oriental Motor sales office.

- Oriental Motor shall not be liable whatsoever for any problems relating to industrial property rights arising from use of any information, circuit, equipment or device provided or referenced in this manual.
- Characteristics, specifications and dimensions are subject to change without notice.
- While we make every effort to offer accurate information in the manual, we welcome your input. Should you find unclear descriptions, errors or omissions, please contact the nearest office.
- Orientalmotor, $\boldsymbol{\alpha}_{\text {STEP, }}$, and ABZO sensor are registered trademarks or trademarks of Oriental Motor Co., Ltd., in Japan and other countries. EtherNet/IP ${ }^{\text {m }}$ is a trademark of ODVA (Open DeviceNet Vendor Association).
Other product names and company names mentioned in this manual may be registered trademarks or trademarks of their respective companies and are hereby acknowledged. The third-party products mentioned in this manual are recommended products, and references to their names shall not be construed as any form of performance guarantee. Oriental Motor is not liable whatsoever for the performance of these third-party products.
© Copyright ORIENTAL MOTOR CO., LTD. 2022
Published in November 2023
- Please contact your nearest Oriental Motor office for further information.

ORIENTAL MOTOR U.S.A. CORP.
Technical Support Tel:800-468-3982
8:30am EST to 5:00pm PST (M-F)
ORIENTAL MOTOR (EUROPA) GmbH Schiessstraße 44, 40549 Düsseldorf, Germany Technical Support Tel:00 800/22 556622
ORIENTAL MOTOR (UK) LTD.
Unit 5 Faraday Office Park, Rankine Road, Basingstoke, Hampshire RG24 8QB UK Tel:+44-1256347090

ORIENTAL MOTOR (FRANCE) SARL Tel:+33-1 47869750
ORIENTAL MOTOR ITALIA s.r.I
Tel:+39-02-93906347

ORIENTAL MOTOR ASIA PACIFIC PTE. LTD.
Singapore
Tel:1800-842-0280
ORIENTAL MOTOR (MALAYSIA) SDN. BHD. Tel:1800-806-161

ORIENTAL MOTOR (THAILAND) CO., LTD.
Tel:1800-888-881
ORIENTAL MOTOR (INDIA) PVT. LTD.
Tel:1800-120-1995 (For English)
1800-121-4149 (For Hindi)
TAIWAN ORIENTAL MOTOR CO., LTD.
Tel:0800-060708
SHANGHAI ORIENTAL MOTOR CO., LTD.
Tel:400-820-6516

INA ORIENTAL MOTOR CO., LTD. Korea
Tel:080-777-2042
ORIENTAL MOTOR CO., LTD.
4-8-1 Higashiueno, Taito-ku, Tokyo
110-8536 Japan
Tel:+81-3-6744-0361
www.orientalmotor.co.jp/ja

[^0]: * The AZM46 type is 0.23 A.

[^1]: * If the parameter ID out of setting range is set to the read parameter ID, the RD-ERR is turned ON at the same time when the read parameter ID_R is updated.

[^2]: *1 When the Main power mode is 24 VDC .
 *2 When the Main power mode is 48 VDC.

