Orientalmotor NewModilon vol. 64 02/2023

Improving Accuracy

with Motors from Oriental Motor

Pulsation Free operation improves syringe pump performance

with an example of a syringe pump

A motor-powered dispensing of a syringe pump can vary greatly in accuracy. An important requirement is precise and pulsation free dosing.

Application: Motor-powered syringe pump

Conventional device

- Used for dispensing liquids such as blood and chemicals
- A 2-phase stepper motor with a basic step angle of 1.8° or a 5-phase stepper motor with a basic step angle of 0.72° drives a mechanism such as a ball screw

Problem

- Dispensing amount of liquid may vary
- This can lead to undesirable overdoses

Oriental motor

Pulsation free movement

with high resolution steppermotors

Solution

PKP Series High-resolution type achieves highaccuracy positioning that is resistant to frictional loads. This contributes to improved discharge volume accuracy.

Application: Motor-powered syringe pump

Structure resistant to frictional loads

The high-resolution type is a motor with a basic step angle of 0.9° for 2-phase and 0.36° for 5-phase stepping motors. The rotor has twice the number of teeth compared to the standard type. Therefore, the displacement angle caused by friction load can be reduced. Since enhances stable operation even in applications such as syringe pumps where frictional load is constantly applied, the accuracy of the dosing amount is improved.

Application Example:

PKP Series High-Resolution Type

PKP Series High-Resolution Type

Features of Stepper Motors

Advantage

Stopping accuracy is improved

• The number of rotor teeth of a 0.9° stepper motor is double compared to a 1.8° stepper motor. Therefore, the displacement of the shaft when an external force is applied is smaller.

Oriental motor

PKP Series High-Resolution Type

Features of Stepper Motors

The vibration of a stepper motor at different speeds can be determined as speed fluctuations with the help of a tachogenerator.

Advantage

• Vibration characteristics are different between a 0.9° stepper motor and a 1.8° stepper motor. Even in the speed range where large vibration occurs with a 1.8° stepper motor, the vibration is much smaller with a 0.9° stepper motor. In this case, changing to a 0.9° stepper motor will reduce the vibration.

Line up PKP Series High-Resolution Type

Various types of the **PKP** Series high-resolution type are available.

		Frame size [mm]			
	Basic Step Angle	42		56.4	
		Bipolar	Unipolar	Bipolar	Unipolar
Contraction of the second seco		•	•	•	•
With encoder					
S CO	0.9°	•	•	•	•
With electromagnetic brake					
Contraction of the second		•	•	•	•

Oriental motor

Line up CVD Series Stepper Motor Driver

The **CVD** Series is a compact line of stepper motor drivers capable of handling a wide variety of applications. When used with the **PKP** Series stepper motors, the **CVD** Series offers the lowest vibration and noise by advanced microstepping control and the high output torque will appropriately overcome any torque issues.

CVD Series Stepper Motor Driver

Driver Type			Pulse Input Type	RS-485 Communication Type	SC Type (Speed Control)	
			Right angle connector type	Right angle connector type	Right angle connector type	
			The connector points upward	The connector points upward	The connector points upward	
Price Range			110.00 - 143.00 €	163.00 - 173.00 €	154.00 €	
Combinable Stepper Motors		Vlotors	2-Phase/5-Phase	2-Phase/5-Phase 5-Phase		
		Outline Mathead				
Parameter		Setting Method	Set via Switch	RS-485 Communication, MEXEO2	Set via Switch	
		Pulse Input Mode	1 Pulse/2 Pulses	-		
		Smooth Drive	Set/Cancel	Set/Cancel	-	
		Standstill Current	25%/50%	0 to 50%	_	
		Resolution	200 to 125,000 P/R	200 to 125,000 P/R	-	
Setting		Drive Current	25 to 100% (16 levels)	0 to 100%	70%/100%	
		Command Filter	0N/0FF	LPF (Velocity filter)/ Movement Average Filter	-	
		Operating Data	-	256 Points	_	
		Acceleration/ Deceleration Time	_	•	•	
I/O Signal	Exc	Excitation ON/OFF	•	•	•	
		Step Angle Select	•	_	_	
	IN	Speed Select	_	•	•	
		Forward Rotation/ Reverse Rotation	•	•	•	
		Instantaneous Stop/ Deceleration Stop	_	•	•	
		Alarm	•	•	•	
	OUT	Timing	•	•	•	
		MOVE	_	•	_	

Newmotion

Do you need information about our products? Our latest flyers, brochures and catalogues can be downloaded from our website:

www.orientalmotor.eu/en/products

Please register for our digital technical magazine and get Solution ideas for your application.

WE'RE EXHIBITING 2023 ----

SPS Nuremberg, Germany 14.11.23 - 16.11.23 Hall 1, Booth 1-424

sps art production solutions

Oriental motor

IMPRESSUM

EDITOR: Oriental Motor (Europa) GmbH Schiessstraße 44, 40549 Düsseldorf Phone: 0211-5206700 www.orientalmotor.de Managing Director: Jiro Kuribayashi, Hirokazu Haravda, Eiji Kawahito Frequency of publication: Monthly

EDITORS OFFICE:

PROOF: ALBERSDRUCK GmbH & Co. KG Leichlinger Straße 11, 40591 Düsseldorf **PICTURE PROOF:** Adobe Stock, Freepik, The Noun Project

Timo Krüssel, Mike Larsen, Andreas Rey,

ORIGAMI SNAIL

Try it yourself!

You can find instructions in the following video:

YOU CAN REACH US Customer Service Center

Mon - Thu: 08:00 - 16:30 CET Friday: 08:00 - 15:00 CET

info@orientalmotor.de www.orientalmotor.eu

UK DF

The information in this brochure is presented as general information. For accurate technical specifications please contact the Oriental Motor (Europa) GmbH office.

This brochure was published in February 2023.

ES